区域间相关性线性混合模型的空间自回归建模

Timbang Sirait
{"title":"区域间相关性线性混合模型的空间自回归建模","authors":"Timbang Sirait","doi":"10.13170/aijst.12.1.30403","DOIUrl":null,"url":null,"abstract":"This study develops a linear mixed model (LMM) that includes spatial effects between regions with a spatial autoregressive model (SAR model). Between observations (regions) on that LMM are usually assumed to be independent. However, these assumptions are not always fulfilled due to dependency between regions. There are two important parts in spatial modeling: spatial dependence and spatial heterogeneity. In this study, we are concerned with the spatial lag or SAR models because dependency between variables of interest is easier to predict. On the other hand, all observations are real and can be directly seen from the data patterns. In addition, as a challenge for researchers to find all estimators while the values of the spatial dependence, sampling variance, and component variance are all unknown. This study aims to find all parameter estimators using a numerical approach and exact solutions. All exact estimators obtained are consistent estimators.","PeriodicalId":7128,"journal":{"name":"Aceh International Journal of Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Autoregressive Modeling on Linear Mixed Models for Dependency Between Regions\",\"authors\":\"Timbang Sirait\",\"doi\":\"10.13170/aijst.12.1.30403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study develops a linear mixed model (LMM) that includes spatial effects between regions with a spatial autoregressive model (SAR model). Between observations (regions) on that LMM are usually assumed to be independent. However, these assumptions are not always fulfilled due to dependency between regions. There are two important parts in spatial modeling: spatial dependence and spatial heterogeneity. In this study, we are concerned with the spatial lag or SAR models because dependency between variables of interest is easier to predict. On the other hand, all observations are real and can be directly seen from the data patterns. In addition, as a challenge for researchers to find all estimators while the values of the spatial dependence, sampling variance, and component variance are all unknown. This study aims to find all parameter estimators using a numerical approach and exact solutions. All exact estimators obtained are consistent estimators.\",\"PeriodicalId\":7128,\"journal\":{\"name\":\"Aceh International Journal of Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aceh International Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13170/aijst.12.1.30403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aceh International Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13170/aijst.12.1.30403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用空间自回归模型(SAR模型)建立了包含区域间空间效应的线性混合模型(LMM)。LMM上的观测(区域)之间通常被认为是独立的。然而,由于区域之间的依赖性,这些假设并不总是满足。空间建模有两个重要部分:空间依赖性和空间异质性。在本研究中,我们关注的是空间滞后或SAR模型,因为感兴趣的变量之间的依赖关系更容易预测。另一方面,所有的观测结果都是真实的,可以直接从数据模式中看到。此外,在空间依赖性、抽样方差和成分方差均未知的情况下,如何找到所有的估计量是研究人员面临的一个挑战。本研究旨在用数值方法找出所有参数估计量及精确解。得到的所有精确估计量都是一致估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Autoregressive Modeling on Linear Mixed Models for Dependency Between Regions
This study develops a linear mixed model (LMM) that includes spatial effects between regions with a spatial autoregressive model (SAR model). Between observations (regions) on that LMM are usually assumed to be independent. However, these assumptions are not always fulfilled due to dependency between regions. There are two important parts in spatial modeling: spatial dependence and spatial heterogeneity. In this study, we are concerned with the spatial lag or SAR models because dependency between variables of interest is easier to predict. On the other hand, all observations are real and can be directly seen from the data patterns. In addition, as a challenge for researchers to find all estimators while the values of the spatial dependence, sampling variance, and component variance are all unknown. This study aims to find all parameter estimators using a numerical approach and exact solutions. All exact estimators obtained are consistent estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
19
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信