{"title":"建筑行业学习学习沙锥模型集成精益学习框架","authors":"A. Parameswaran, K. Ranadewa","doi":"10.1108/sasbe-10-2022-0234","DOIUrl":null,"url":null,"abstract":"PurposeThe lack of knowledge has hindered the successful implementation of lean in the construction industry. This has alarmed the need for lean learning practices. Out of numerous models, the learning-to-learn sand cone model received a wider acknowledgment for learning practices. Thus, this study aims to propose a learning-to-learn sand cone model integrated lean learning framework for the construction industry.Design/methodology/approachThe research adopted an interpretivism stance. A qualitative research approach was adopted for the study. Consequently, fifteen (15) semi-structured interviews and document reviews were carried out to collect data in three (3) cases selected through purposive sampling. Code-based content analysis was used to analyse the data.FindingsFifty-two (52) sub-activities pertaining to nine lean learners at each stage of the lean learning procedure were identified. The most significant practices in the lean learning procedure to continuously improve lean learning in the organisation were maintaining records, providing a performance update to senior management and preparing and distributing several hierarchical manuals for all levels of staff to aid in the implementation of lean approaches.Originality/valueThe findings of the research can be aided to successfully implement lean by following the identified sub-activities via various parties within the organisation. The proposed lean learning framework opens several research areas on lean learning in the construction industry. This is the first research to uncover a lean learning framework in the construction industry rather than at the educational institute level.","PeriodicalId":45779,"journal":{"name":"Smart and Sustainable Built Environment","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning-to-learn sand cone model integrated lean learning framework for construction industry\",\"authors\":\"A. Parameswaran, K. Ranadewa\",\"doi\":\"10.1108/sasbe-10-2022-0234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe lack of knowledge has hindered the successful implementation of lean in the construction industry. This has alarmed the need for lean learning practices. Out of numerous models, the learning-to-learn sand cone model received a wider acknowledgment for learning practices. Thus, this study aims to propose a learning-to-learn sand cone model integrated lean learning framework for the construction industry.Design/methodology/approachThe research adopted an interpretivism stance. A qualitative research approach was adopted for the study. Consequently, fifteen (15) semi-structured interviews and document reviews were carried out to collect data in three (3) cases selected through purposive sampling. Code-based content analysis was used to analyse the data.FindingsFifty-two (52) sub-activities pertaining to nine lean learners at each stage of the lean learning procedure were identified. The most significant practices in the lean learning procedure to continuously improve lean learning in the organisation were maintaining records, providing a performance update to senior management and preparing and distributing several hierarchical manuals for all levels of staff to aid in the implementation of lean approaches.Originality/valueThe findings of the research can be aided to successfully implement lean by following the identified sub-activities via various parties within the organisation. The proposed lean learning framework opens several research areas on lean learning in the construction industry. This is the first research to uncover a lean learning framework in the construction industry rather than at the educational institute level.\",\"PeriodicalId\":45779,\"journal\":{\"name\":\"Smart and Sustainable Built Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart and Sustainable Built Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/sasbe-10-2022-0234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart and Sustainable Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/sasbe-10-2022-0234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Learning-to-learn sand cone model integrated lean learning framework for construction industry
PurposeThe lack of knowledge has hindered the successful implementation of lean in the construction industry. This has alarmed the need for lean learning practices. Out of numerous models, the learning-to-learn sand cone model received a wider acknowledgment for learning practices. Thus, this study aims to propose a learning-to-learn sand cone model integrated lean learning framework for the construction industry.Design/methodology/approachThe research adopted an interpretivism stance. A qualitative research approach was adopted for the study. Consequently, fifteen (15) semi-structured interviews and document reviews were carried out to collect data in three (3) cases selected through purposive sampling. Code-based content analysis was used to analyse the data.FindingsFifty-two (52) sub-activities pertaining to nine lean learners at each stage of the lean learning procedure were identified. The most significant practices in the lean learning procedure to continuously improve lean learning in the organisation were maintaining records, providing a performance update to senior management and preparing and distributing several hierarchical manuals for all levels of staff to aid in the implementation of lean approaches.Originality/valueThe findings of the research can be aided to successfully implement lean by following the identified sub-activities via various parties within the organisation. The proposed lean learning framework opens several research areas on lean learning in the construction industry. This is the first research to uncover a lean learning framework in the construction industry rather than at the educational institute level.