Stiefel流形优化问题的乘子校正方法

IF 1.2 Q2 MATHEMATICS, APPLIED
Lei Wang, Bin Gao, Xin Liu
{"title":"Stiefel流形优化问题的乘子校正方法","authors":"Lei Wang, Bin Gao, Xin Liu","doi":"10.4208/csiam-am.SO-2020-0008","DOIUrl":null,"url":null,"abstract":"We propose a class of multipliers correction methods to minimize a differentiable function over the Stiefel manifold. The proposed methods combine a function value reduction step with a proximal correction step. The former one searches along an arbitrary descent direction in the Euclidean space instead of a vector in the tangent space of the Stiefel manifold. Meanwhile, the latter one minimizes a first-order proximal approximation of the objective function in the range space of the current iterate to make Lagrangian multipliers associated with orthogonality constraints symmetric at any accumulation point. The global convergence has been established for the proposed methods. Preliminary numerical experiments demonstrate that the new methods significantly outperform other state-of-the-art first-order approaches in solving various kinds of testing problems.","PeriodicalId":29749,"journal":{"name":"CSIAM Transactions on Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multipliers Correction Methods for Optimization Problems over the Stiefel Manifold\",\"authors\":\"Lei Wang, Bin Gao, Xin Liu\",\"doi\":\"10.4208/csiam-am.SO-2020-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a class of multipliers correction methods to minimize a differentiable function over the Stiefel manifold. The proposed methods combine a function value reduction step with a proximal correction step. The former one searches along an arbitrary descent direction in the Euclidean space instead of a vector in the tangent space of the Stiefel manifold. Meanwhile, the latter one minimizes a first-order proximal approximation of the objective function in the range space of the current iterate to make Lagrangian multipliers associated with orthogonality constraints symmetric at any accumulation point. The global convergence has been established for the proposed methods. Preliminary numerical experiments demonstrate that the new methods significantly outperform other state-of-the-art first-order approaches in solving various kinds of testing problems.\",\"PeriodicalId\":29749,\"journal\":{\"name\":\"CSIAM Transactions on Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSIAM Transactions on Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/csiam-am.SO-2020-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSIAM Transactions on Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.SO-2020-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了一类乘法器校正方法来最小化Stiefel流形上的可微函数。所提出的方法结合了函数值减少步骤和近端校正步骤。前者在欧氏空间中沿任意下降方向搜索,而不是在Stiefel流形的切线空间中沿向量搜索。同时,后一种方法使目标函数在当前迭代的范围空间中的一阶近似最小化,以使与正交性约束相关的拉格朗日乘子在任何累积点对称。所提出的方法已经建立了全局收敛性。初步的数值实验表明,在解决各种测试问题方面,新方法明显优于其他最先进的一阶方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multipliers Correction Methods for Optimization Problems over the Stiefel Manifold
We propose a class of multipliers correction methods to minimize a differentiable function over the Stiefel manifold. The proposed methods combine a function value reduction step with a proximal correction step. The former one searches along an arbitrary descent direction in the Euclidean space instead of a vector in the tangent space of the Stiefel manifold. Meanwhile, the latter one minimizes a first-order proximal approximation of the objective function in the range space of the current iterate to make Lagrangian multipliers associated with orthogonality constraints symmetric at any accumulation point. The global convergence has been established for the proposed methods. Preliminary numerical experiments demonstrate that the new methods significantly outperform other state-of-the-art first-order approaches in solving various kinds of testing problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信