{"title":"2-表示与星形代数的加权极限","authors":"Mateusz Stroiński","doi":"10.1007/s10485-023-09737-w","DOIUrl":null,"url":null,"abstract":"<div><p>We apply the theory of weighted bicategorical colimits to study the problem of existence and computation of such colimits of birepresentations of finitary bicategories. The main application of our results is the complete classification of simple transitive birepresentations of a bicategory studied previously by Zimmermann. The classification confirms a conjecture he has made.\n</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-023-09737-w.pdf","citationCount":"2","resultStr":"{\"title\":\"Weighted Colimits of 2-Representations and Star Algebras\",\"authors\":\"Mateusz Stroiński\",\"doi\":\"10.1007/s10485-023-09737-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We apply the theory of weighted bicategorical colimits to study the problem of existence and computation of such colimits of birepresentations of finitary bicategories. The main application of our results is the complete classification of simple transitive birepresentations of a bicategory studied previously by Zimmermann. The classification confirms a conjecture he has made.\\n</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-023-09737-w.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-023-09737-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-023-09737-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Weighted Colimits of 2-Representations and Star Algebras
We apply the theory of weighted bicategorical colimits to study the problem of existence and computation of such colimits of birepresentations of finitary bicategories. The main application of our results is the complete classification of simple transitive birepresentations of a bicategory studied previously by Zimmermann. The classification confirms a conjecture he has made.
期刊介绍:
Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant.
Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.