{"title":"微路G-trade的体量研究","authors":"N. Soltankhah, N. Khademian","doi":"10.52547/ijmsi.17.1.153","DOIUrl":null,"url":null,"abstract":". A µ -way G -trade ( µ ≥ 2) consists of µ disjoint decompositions of some simple (underlying) graph H into copies of a graph G. The number of copies of the graph G in each of the decompositions is the volume of the G -trade and denoted by s. In this paper, we determine all values s for which there exists a µ -way K 1 ,m -trade of volume s for underlying graph H = K 2 m, 2 m and H = K 2 m .","PeriodicalId":43670,"journal":{"name":"Iranian Journal of Mathematical Sciences and Informatics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Volume of µ-way G-trade\",\"authors\":\"N. Soltankhah, N. Khademian\",\"doi\":\"10.52547/ijmsi.17.1.153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A µ -way G -trade ( µ ≥ 2) consists of µ disjoint decompositions of some simple (underlying) graph H into copies of a graph G. The number of copies of the graph G in each of the decompositions is the volume of the G -trade and denoted by s. In this paper, we determine all values s for which there exists a µ -way K 1 ,m -trade of volume s for underlying graph H = K 2 m, 2 m and H = K 2 m .\",\"PeriodicalId\":43670,\"journal\":{\"name\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/ijmsi.17.1.153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Mathematical Sciences and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/ijmsi.17.1.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
. µ—找出克贸易(µ≥2)由µ分离一些简单的(潜在)的分解图H进一个图G的多个拷贝,拷贝的数量每一个图G的分解是G贸易的体积,用s。在本文中,我们确定年代的所有值存在一个µ方法K 1 m的体积年代贸易基本图H = K 2 m, 2 m和H = K 2 m。
. A µ -way G -trade ( µ ≥ 2) consists of µ disjoint decompositions of some simple (underlying) graph H into copies of a graph G. The number of copies of the graph G in each of the decompositions is the volume of the G -trade and denoted by s. In this paper, we determine all values s for which there exists a µ -way K 1 ,m -trade of volume s for underlying graph H = K 2 m, 2 m and H = K 2 m .