反应性聚合物一级结构对凝胶网络结构和力学性能的影响

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE
Tsutomu Furuya, Tsuyoshi Koga
{"title":"反应性聚合物一级结构对凝胶网络结构和力学性能的影响","authors":"Tsutomu Furuya,&nbsp;Tsuyoshi Koga","doi":"10.1002/mats.202200044","DOIUrl":null,"url":null,"abstract":"<p>The effects of the primary structure of multifunctional reactive polymers on the network structure and the mechanical properties of gels formed by crosslinking the reactive polymers with crosslinkers are studied by a coarse-grained molecular dynamics simulation. When functional groups are randomly arranged on the polymers, the network structure, such as the number densities of elastically effective chains and entanglements, and the mechanical properties depend on the number average molecular weight of the polymers; however, these properties are almost independent of the molecular weight distribution and the functional group number distribution of the polymers. The control of the arrangement of functional groups on the polymers improves the uniformity and the mechanical properties. By changing the arrangement from a random one to a periodic one, the number of elastically effective chains and the shear modulus increase, and the occurrence of entanglement is suppressed. The detailed analysis of the network structure reveals that the improvement of the mechanical properties is mainly due to the reduction of intramolecular crosslinking.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of Primary Structure of Reactive Polymers on Network Structure and Mechanical Properties of Gels\",\"authors\":\"Tsutomu Furuya,&nbsp;Tsuyoshi Koga\",\"doi\":\"10.1002/mats.202200044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effects of the primary structure of multifunctional reactive polymers on the network structure and the mechanical properties of gels formed by crosslinking the reactive polymers with crosslinkers are studied by a coarse-grained molecular dynamics simulation. When functional groups are randomly arranged on the polymers, the network structure, such as the number densities of elastically effective chains and entanglements, and the mechanical properties depend on the number average molecular weight of the polymers; however, these properties are almost independent of the molecular weight distribution and the functional group number distribution of the polymers. The control of the arrangement of functional groups on the polymers improves the uniformity and the mechanical properties. By changing the arrangement from a random one to a periodic one, the number of elastically effective chains and the shear modulus increase, and the occurrence of entanglement is suppressed. The detailed analysis of the network structure reveals that the improvement of the mechanical properties is mainly due to the reduction of intramolecular crosslinking.</p>\",\"PeriodicalId\":18157,\"journal\":{\"name\":\"Macromolecular Theory and Simulations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mats.202200044\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202200044","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

通过粗粒度分子动力学模拟研究了多功能反应性聚合物的一级结构对反应性聚合物与交联剂交联形成的凝胶的网络结构和力学性能的影响。当官能团随机排列在聚合物上时,网络结构(如弹性有效链和缠结的数量密度)和力学性能取决于聚合物的数量平均分子量;然而,这些性质几乎与聚合物的分子量分布和官能团数分布无关。控制官能团在聚合物上的排列可以改善聚合物的均匀性和力学性能。通过将随机排列改变为周期性排列,增加了弹性有效链的数量和剪切模量,抑制了缠结的发生。对网络结构的详细分析表明,力学性能的改善主要是由于分子内交联的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of Primary Structure of Reactive Polymers on Network Structure and Mechanical Properties of Gels

Effects of Primary Structure of Reactive Polymers on Network Structure and Mechanical Properties of Gels

The effects of the primary structure of multifunctional reactive polymers on the network structure and the mechanical properties of gels formed by crosslinking the reactive polymers with crosslinkers are studied by a coarse-grained molecular dynamics simulation. When functional groups are randomly arranged on the polymers, the network structure, such as the number densities of elastically effective chains and entanglements, and the mechanical properties depend on the number average molecular weight of the polymers; however, these properties are almost independent of the molecular weight distribution and the functional group number distribution of the polymers. The control of the arrangement of functional groups on the polymers improves the uniformity and the mechanical properties. By changing the arrangement from a random one to a periodic one, the number of elastically effective chains and the shear modulus increase, and the occurrence of entanglement is suppressed. The detailed analysis of the network structure reveals that the improvement of the mechanical properties is mainly due to the reduction of intramolecular crosslinking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信