{"title":"一种通过角刚度测量牙种植体稳定性的振动亚共振诊断装置","authors":"Weiwei Xu, Darwin S. Wood, Yifeng Liu, I. Shen","doi":"10.1115/1.4051832","DOIUrl":null,"url":null,"abstract":"\n Stability of a dental implant reflects quality of osseointegration between the implant and its surrounding bone. While many methods have been proposed to characterize implant stability, angular stiffness at the neck of the implant has been proven to be a rigorous and accurate measure. Nevertheless, fast and reliable measurements of the angular stiffness in a clinical environment are not yet available. This article is to demonstrate a novel stability diagnostic device that can measure the angular stiffness accurately in clinical environments. The device consists of a sensing unit, a controller unit, and a mobile app. In the sensing unit, a coupler attaches a buzzer motor and a tiny accelerometer to an abutment of an implant, whose angular stiffness is to be measured. The buzzer vibrates at a frequency below the resonance frequency of the implant–bone–abutment system. Meanwhile, the accelerometer measures the abutment's vibration. The controller unit powers the buzzer, reads the accelerometer data, and transmits the data to the mobile app. The mobile app postprocesses the data and extracts the angular stiffness through use of a finite element model and a nonlinear regression algorithm. The extracted angular stiffness is compared with a calibrated angular stiffness, which is obtained independently via a force hammer and a laser Doppler vibrometer. The comparison shows reasonable agreement, with the difference being in the range of 4–20%.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Vibratory, Subresonant Diagnostic Device to Measure Dental Implant Stability Via Angular Stiffness\",\"authors\":\"Weiwei Xu, Darwin S. Wood, Yifeng Liu, I. Shen\",\"doi\":\"10.1115/1.4051832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Stability of a dental implant reflects quality of osseointegration between the implant and its surrounding bone. While many methods have been proposed to characterize implant stability, angular stiffness at the neck of the implant has been proven to be a rigorous and accurate measure. Nevertheless, fast and reliable measurements of the angular stiffness in a clinical environment are not yet available. This article is to demonstrate a novel stability diagnostic device that can measure the angular stiffness accurately in clinical environments. The device consists of a sensing unit, a controller unit, and a mobile app. In the sensing unit, a coupler attaches a buzzer motor and a tiny accelerometer to an abutment of an implant, whose angular stiffness is to be measured. The buzzer vibrates at a frequency below the resonance frequency of the implant–bone–abutment system. Meanwhile, the accelerometer measures the abutment's vibration. The controller unit powers the buzzer, reads the accelerometer data, and transmits the data to the mobile app. The mobile app postprocesses the data and extracts the angular stiffness through use of a finite element model and a nonlinear regression algorithm. The extracted angular stiffness is compared with a calibrated angular stiffness, which is obtained independently via a force hammer and a laser Doppler vibrometer. The comparison shows reasonable agreement, with the difference being in the range of 4–20%.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4051832\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4051832","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Vibratory, Subresonant Diagnostic Device to Measure Dental Implant Stability Via Angular Stiffness
Stability of a dental implant reflects quality of osseointegration between the implant and its surrounding bone. While many methods have been proposed to characterize implant stability, angular stiffness at the neck of the implant has been proven to be a rigorous and accurate measure. Nevertheless, fast and reliable measurements of the angular stiffness in a clinical environment are not yet available. This article is to demonstrate a novel stability diagnostic device that can measure the angular stiffness accurately in clinical environments. The device consists of a sensing unit, a controller unit, and a mobile app. In the sensing unit, a coupler attaches a buzzer motor and a tiny accelerometer to an abutment of an implant, whose angular stiffness is to be measured. The buzzer vibrates at a frequency below the resonance frequency of the implant–bone–abutment system. Meanwhile, the accelerometer measures the abutment's vibration. The controller unit powers the buzzer, reads the accelerometer data, and transmits the data to the mobile app. The mobile app postprocesses the data and extracts the angular stiffness through use of a finite element model and a nonlinear regression algorithm. The extracted angular stiffness is compared with a calibrated angular stiffness, which is obtained independently via a force hammer and a laser Doppler vibrometer. The comparison shows reasonable agreement, with the difference being in the range of 4–20%.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.