{"title":"矩阵指数范数的常数上界","authors":"Y. Nechepurenko, G. Zasko","doi":"10.1515/rnam-2022-0002","DOIUrl":null,"url":null,"abstract":"Abstract This work is devoted to the constant (time-independent) upper bounds on the function ∥ exp(tA)∥2 where t ⩾ 0 and A is a square matrix whose eigenvalues have negative real parts. Along with some constant upper bounds obtained from known time-dependent exponential upper bounds based on the solutions of Lyapunov equations, a new constant upper bound is proposed that has significant advantages. A detailed comparison of all these constant upper bounds is carried out using 2 × 2 matrices and matrices of medium size from the well-known NEP collection.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":"37 1","pages":"15 - 23"},"PeriodicalIF":0.5000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constant upper bounds on the matrix exponential norm\",\"authors\":\"Y. Nechepurenko, G. Zasko\",\"doi\":\"10.1515/rnam-2022-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work is devoted to the constant (time-independent) upper bounds on the function ∥ exp(tA)∥2 where t ⩾ 0 and A is a square matrix whose eigenvalues have negative real parts. Along with some constant upper bounds obtained from known time-dependent exponential upper bounds based on the solutions of Lyapunov equations, a new constant upper bound is proposed that has significant advantages. A detailed comparison of all these constant upper bounds is carried out using 2 × 2 matrices and matrices of medium size from the well-known NEP collection.\",\"PeriodicalId\":49585,\"journal\":{\"name\":\"Russian Journal of Numerical Analysis and Mathematical Modelling\",\"volume\":\"37 1\",\"pages\":\"15 - 23\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Numerical Analysis and Mathematical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/rnam-2022-0002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2022-0002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Constant upper bounds on the matrix exponential norm
Abstract This work is devoted to the constant (time-independent) upper bounds on the function ∥ exp(tA)∥2 where t ⩾ 0 and A is a square matrix whose eigenvalues have negative real parts. Along with some constant upper bounds obtained from known time-dependent exponential upper bounds based on the solutions of Lyapunov equations, a new constant upper bound is proposed that has significant advantages. A detailed comparison of all these constant upper bounds is carried out using 2 × 2 matrices and matrices of medium size from the well-known NEP collection.
期刊介绍:
The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest.
Topics:
-numerical analysis-
numerical linear algebra-
finite element methods for PDEs-
iterative methods-
Monte-Carlo methods-
mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.