矩阵指数范数的常数上界

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Y. Nechepurenko, G. Zasko
{"title":"矩阵指数范数的常数上界","authors":"Y. Nechepurenko, G. Zasko","doi":"10.1515/rnam-2022-0002","DOIUrl":null,"url":null,"abstract":"Abstract This work is devoted to the constant (time-independent) upper bounds on the function ∥ exp(tA)∥2 where t ⩾ 0 and A is a square matrix whose eigenvalues have negative real parts. Along with some constant upper bounds obtained from known time-dependent exponential upper bounds based on the solutions of Lyapunov equations, a new constant upper bound is proposed that has significant advantages. A detailed comparison of all these constant upper bounds is carried out using 2 × 2 matrices and matrices of medium size from the well-known NEP collection.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":"37 1","pages":"15 - 23"},"PeriodicalIF":0.5000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constant upper bounds on the matrix exponential norm\",\"authors\":\"Y. Nechepurenko, G. Zasko\",\"doi\":\"10.1515/rnam-2022-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work is devoted to the constant (time-independent) upper bounds on the function ∥ exp(tA)∥2 where t ⩾ 0 and A is a square matrix whose eigenvalues have negative real parts. Along with some constant upper bounds obtained from known time-dependent exponential upper bounds based on the solutions of Lyapunov equations, a new constant upper bound is proposed that has significant advantages. A detailed comparison of all these constant upper bounds is carried out using 2 × 2 matrices and matrices of medium size from the well-known NEP collection.\",\"PeriodicalId\":49585,\"journal\":{\"name\":\"Russian Journal of Numerical Analysis and Mathematical Modelling\",\"volume\":\"37 1\",\"pages\":\"15 - 23\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Numerical Analysis and Mathematical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/rnam-2022-0002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2022-0002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

这项工作致力于函数∥exp(tA)∥2上的常数(时间无关的)上限,其中t大于或等于0和A是一个方阵,其特征值具有负实部。根据Lyapunov方程的解,结合已知的随时间变化的指数上界得到的常数上界,提出了一个新的具有显著优点的常数上界。使用2 × 2矩阵和来自著名的NEP集合的中等大小的矩阵对所有这些常数上界进行了详细的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constant upper bounds on the matrix exponential norm
Abstract This work is devoted to the constant (time-independent) upper bounds on the function ∥ exp(tA)∥2 where t ⩾ 0 and A is a square matrix whose eigenvalues have negative real parts. Along with some constant upper bounds obtained from known time-dependent exponential upper bounds based on the solutions of Lyapunov equations, a new constant upper bound is proposed that has significant advantages. A detailed comparison of all these constant upper bounds is carried out using 2 × 2 matrices and matrices of medium size from the well-known NEP collection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest. Topics: -numerical analysis- numerical linear algebra- finite element methods for PDEs- iterative methods- Monte-Carlo methods- mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信