垂直激励下机器基础衰减响应的实验与数值研究

IF 1.7 Q3 ENGINEERING, GEOLOGICAL
Sreyashrao Surapreddi, P. Ghosh
{"title":"垂直激励下机器基础衰减响应的实验与数值研究","authors":"Sreyashrao Surapreddi, P. Ghosh","doi":"10.1080/17486025.2021.1980231","DOIUrl":null,"url":null,"abstract":"ABSTRACT The attenuation response from a series of block vibration tests performed on a model square machine foundation at a site near IIT Kanpur, India, is reported in this paper. The dynamic response at different locations from the vibration source is measured for a wide range of frequencies. The observed attenuation response is compared with the analytical and the finite element (FE) solutions to bolster the experimental findings. A parametric study is conducted utilising the FE analysis to predict the surface wave mitigation characteristics in various soils. It can be observed that the surface waves dominate the attenuation characteristics at the far-field locations and attenuate at a faster rate in soft soils compared to stiff soils. The material and the geometric damping characteristics of the surface waves influence the attenuation characteristics of horizontal and vertical vibrations at the far-field pick-up points. The attenuation characteristics of horizontal and vertical amplitude responses are found to differ significantly. Curve fitting and regression analyses are also performed to develop simplified design expressions to predict the attenuation response of horizontal and vertical vibrations. The proposed design expressions compare well with the values reported in the literature and can be utilised by practicing engineers.","PeriodicalId":46470,"journal":{"name":"Geomechanics and Geoengineering-An International Journal","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Experimental and numerical investigations on attenuation response of machine foundations under vertical excitation\",\"authors\":\"Sreyashrao Surapreddi, P. Ghosh\",\"doi\":\"10.1080/17486025.2021.1980231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The attenuation response from a series of block vibration tests performed on a model square machine foundation at a site near IIT Kanpur, India, is reported in this paper. The dynamic response at different locations from the vibration source is measured for a wide range of frequencies. The observed attenuation response is compared with the analytical and the finite element (FE) solutions to bolster the experimental findings. A parametric study is conducted utilising the FE analysis to predict the surface wave mitigation characteristics in various soils. It can be observed that the surface waves dominate the attenuation characteristics at the far-field locations and attenuate at a faster rate in soft soils compared to stiff soils. The material and the geometric damping characteristics of the surface waves influence the attenuation characteristics of horizontal and vertical vibrations at the far-field pick-up points. The attenuation characteristics of horizontal and vertical amplitude responses are found to differ significantly. Curve fitting and regression analyses are also performed to develop simplified design expressions to predict the attenuation response of horizontal and vertical vibrations. The proposed design expressions compare well with the values reported in the literature and can be utilised by practicing engineers.\",\"PeriodicalId\":46470,\"journal\":{\"name\":\"Geomechanics and Geoengineering-An International Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Geoengineering-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17486025.2021.1980231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geoengineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17486025.2021.1980231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 7

摘要

摘要本文报道了在印度坎普尔理工学院附近的一个场地进行的一系列方形机器基础模型的衰减响应试验。在较宽的频率范围内,测量了振动源不同位置的动态响应。将观测到的衰减响应与解析解和有限元解进行了比较,以支持实验结果。利用有限元分析进行了参数化研究,以预测不同土壤的表面波减缓特性。可以观察到,表面波在远场位置的衰减特征占主导地位,并且在软土中比在硬土中衰减得更快。表面波的材料和几何阻尼特性影响远场拾取点水平和垂直振动的衰减特性。发现水平和垂直振幅响应的衰减特性有显著差异。曲线拟合和回归分析也进行了发展简化的设计表达式,以预测衰减响应的水平和垂直振动。所提出的设计表达式与文献中报道的值比较好,可以由实践工程师使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and numerical investigations on attenuation response of machine foundations under vertical excitation
ABSTRACT The attenuation response from a series of block vibration tests performed on a model square machine foundation at a site near IIT Kanpur, India, is reported in this paper. The dynamic response at different locations from the vibration source is measured for a wide range of frequencies. The observed attenuation response is compared with the analytical and the finite element (FE) solutions to bolster the experimental findings. A parametric study is conducted utilising the FE analysis to predict the surface wave mitigation characteristics in various soils. It can be observed that the surface waves dominate the attenuation characteristics at the far-field locations and attenuate at a faster rate in soft soils compared to stiff soils. The material and the geometric damping characteristics of the surface waves influence the attenuation characteristics of horizontal and vertical vibrations at the far-field pick-up points. The attenuation characteristics of horizontal and vertical amplitude responses are found to differ significantly. Curve fitting and regression analyses are also performed to develop simplified design expressions to predict the attenuation response of horizontal and vertical vibrations. The proposed design expressions compare well with the values reported in the literature and can be utilised by practicing engineers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
27
期刊介绍: Geomechanics is concerned with the application of the principle of mechanics to earth-materials (namely geo-material). Geoengineering covers a wide range of engineering disciplines related to geo-materials, such as foundation engineering, slope engineering, tunnelling, rock engineering, engineering geology and geo-environmental engineering. Geomechanics and Geoengineering is a major publication channel for research in the areas of soil and rock mechanics, geotechnical and geological engineering, engineering geology, geo-environmental engineering and all geo-material related engineering and science disciplines. The Journal provides an international forum for the exchange of innovative ideas, especially between researchers in Asia and the rest of the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信