恐高卫兵瞭望塔问题

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Ritesh Seth , Anil Maheshwari , Subhas C. Nandy
{"title":"恐高卫兵瞭望塔问题","authors":"Ritesh Seth ,&nbsp;Anil Maheshwari ,&nbsp;Subhas C. Nandy","doi":"10.1016/j.comgeo.2022.101918","DOIUrl":null,"url":null,"abstract":"<div><p>In the <em>acrophobic guard watchtower problem</em> for a polyhedral terrain, a square axis-aligned platform is placed on the top of a tower whose bottom end-point lies on the surface of the terrain. As in the standard watchtower problem, the objective is to minimize the height (i.e., the length) of the watchtower such that every point on the surface of the terrain is weakly visible from the platform placed on the top of the tower. In this paper, we show that in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> the problem can be solved in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> time, and in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> it takes <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time, where <em>n</em> is the total number of vertices of the terrain.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acrophobic guard watchtower problem\",\"authors\":\"Ritesh Seth ,&nbsp;Anil Maheshwari ,&nbsp;Subhas C. Nandy\",\"doi\":\"10.1016/j.comgeo.2022.101918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the <em>acrophobic guard watchtower problem</em> for a polyhedral terrain, a square axis-aligned platform is placed on the top of a tower whose bottom end-point lies on the surface of the terrain. As in the standard watchtower problem, the objective is to minimize the height (i.e., the length) of the watchtower such that every point on the surface of the terrain is weakly visible from the platform placed on the top of the tower. In this paper, we show that in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> the problem can be solved in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> time, and in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> it takes <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time, where <em>n</em> is the total number of vertices of the terrain.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092577212200061X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092577212200061X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在多面体地形的恐高警戒瞭望塔问题中,在塔顶放置一个方形的轴向平台,塔顶的下端点位于地形表面。在标准的瞭望塔问题中,目标是最小化瞭望塔的高度(即长度),这样从位于塔顶的平台上就可以微弱地看到地形表面上的每个点。在本文中,我们证明了在R2中该问题可以在O(n)时间内解决,而在R3中则需要O(nlog (n))时间,其中n是地形的顶点总数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acrophobic guard watchtower problem

In the acrophobic guard watchtower problem for a polyhedral terrain, a square axis-aligned platform is placed on the top of a tower whose bottom end-point lies on the surface of the terrain. As in the standard watchtower problem, the objective is to minimize the height (i.e., the length) of the watchtower such that every point on the surface of the terrain is weakly visible from the platform placed on the top of the tower. In this paper, we show that in R2 the problem can be solved in O(n) time, and in R3 it takes O(nlogn) time, where n is the total number of vertices of the terrain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信