{"title":"旋转不变厄米随机矩阵中主子矩阵的谱及Markov-Krein对应","authors":"Katsunori Fujie, Takahiro Hasebe","doi":"10.30757/alea.v19-05","DOIUrl":null,"url":null,"abstract":"We prove a concentration phenomenon on the empirical eigenvalue distribution (EED) of the principal submatrix in a random hermitian matrix whose distribution is invariant under unitary conjugacy; for example, this class includes GUE (Gaussian Unitary Ensemble) and Wishart matrices. More precisely, if the EED of the whole matrix converges to some deterministic probability measure m, then its fluctuation from the EED of the principal submatrix, after a rescaling, concentrates at the Rayleigh measure (in general, a Schwartz distribution) associated with m by the Markov–Krein correspondence. For the proof, we use the moment method with Weingarten calculus and free probability. At some stage of calculations, the proof requires a relation between the moments of the Rayleigh measure and free cumulants of m. This formula is more or less known, but we provide a different proof by observing a combinatorial structure of non-crossing partitions.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Spectra of Principal Submatrices in Rotationally\\nInvariant Hermitian Random Matrices and the Markov–\\nKrein Correspondence\",\"authors\":\"Katsunori Fujie, Takahiro Hasebe\",\"doi\":\"10.30757/alea.v19-05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a concentration phenomenon on the empirical eigenvalue distribution (EED) of the principal submatrix in a random hermitian matrix whose distribution is invariant under unitary conjugacy; for example, this class includes GUE (Gaussian Unitary Ensemble) and Wishart matrices. More precisely, if the EED of the whole matrix converges to some deterministic probability measure m, then its fluctuation from the EED of the principal submatrix, after a rescaling, concentrates at the Rayleigh measure (in general, a Schwartz distribution) associated with m by the Markov–Krein correspondence. For the proof, we use the moment method with Weingarten calculus and free probability. At some stage of calculations, the proof requires a relation between the moments of the Rayleigh measure and free cumulants of m. This formula is more or less known, but we provide a different proof by observing a combinatorial structure of non-crossing partitions.\",\"PeriodicalId\":49244,\"journal\":{\"name\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v19-05\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-05","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
The Spectra of Principal Submatrices in Rotationally
Invariant Hermitian Random Matrices and the Markov–
Krein Correspondence
We prove a concentration phenomenon on the empirical eigenvalue distribution (EED) of the principal submatrix in a random hermitian matrix whose distribution is invariant under unitary conjugacy; for example, this class includes GUE (Gaussian Unitary Ensemble) and Wishart matrices. More precisely, if the EED of the whole matrix converges to some deterministic probability measure m, then its fluctuation from the EED of the principal submatrix, after a rescaling, concentrates at the Rayleigh measure (in general, a Schwartz distribution) associated with m by the Markov–Krein correspondence. For the proof, we use the moment method with Weingarten calculus and free probability. At some stage of calculations, the proof requires a relation between the moments of the Rayleigh measure and free cumulants of m. This formula is more or less known, but we provide a different proof by observing a combinatorial structure of non-crossing partitions.
期刊介绍:
ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted.
ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper.
ALEA is affiliated with the Institute of Mathematical Statistics.