旋转不变厄米随机矩阵中主子矩阵的谱及Markov-Krein对应

Pub Date : 2021-03-16 DOI:10.30757/alea.v19-05
Katsunori Fujie, Takahiro Hasebe
{"title":"旋转不变厄米随机矩阵中主子矩阵的谱及Markov-Krein对应","authors":"Katsunori Fujie, Takahiro Hasebe","doi":"10.30757/alea.v19-05","DOIUrl":null,"url":null,"abstract":"We prove a concentration phenomenon on the empirical eigenvalue distribution (EED) of the principal submatrix in a random hermitian matrix whose distribution is invariant under unitary conjugacy; for example, this class includes GUE (Gaussian Unitary Ensemble) and Wishart matrices. More precisely, if the EED of the whole matrix converges to some deterministic probability measure m, then its fluctuation from the EED of the principal submatrix, after a rescaling, concentrates at the Rayleigh measure (in general, a Schwartz distribution) associated with m by the Markov–Krein correspondence. For the proof, we use the moment method with Weingarten calculus and free probability. At some stage of calculations, the proof requires a relation between the moments of the Rayleigh measure and free cumulants of m. This formula is more or less known, but we provide a different proof by observing a combinatorial structure of non-crossing partitions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Spectra of Principal Submatrices in Rotationally\\nInvariant Hermitian Random Matrices and the Markov–\\nKrein Correspondence\",\"authors\":\"Katsunori Fujie, Takahiro Hasebe\",\"doi\":\"10.30757/alea.v19-05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a concentration phenomenon on the empirical eigenvalue distribution (EED) of the principal submatrix in a random hermitian matrix whose distribution is invariant under unitary conjugacy; for example, this class includes GUE (Gaussian Unitary Ensemble) and Wishart matrices. More precisely, if the EED of the whole matrix converges to some deterministic probability measure m, then its fluctuation from the EED of the principal submatrix, after a rescaling, concentrates at the Rayleigh measure (in general, a Schwartz distribution) associated with m by the Markov–Krein correspondence. For the proof, we use the moment method with Weingarten calculus and free probability. At some stage of calculations, the proof requires a relation between the moments of the Rayleigh measure and free cumulants of m. This formula is more or less known, but we provide a different proof by observing a combinatorial structure of non-crossing partitions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v19-05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

证明了在酉共轭下分布不变的随机厄米矩阵的主子矩阵的经验特征值分布(EED)上的集中现象;例如,这个类包括GUE(高斯统一集合)和Wishart矩阵。更准确地说,如果整个矩阵的EED收敛于某个确定性概率测度m,则其从主子矩阵的EED的波动,在重新标度后,集中在与m相关的瑞利测度(通常是施瓦兹分布),通过Markov-Krein对应。为了证明这一点,我们使用了矩法和Weingarten微积分以及自由概率。在计算的某些阶段,证明需要瑞利测度的矩与m的自由累积量之间的关系。这个公式或多或少为人所知,但我们通过观察非交叉分区的组合结构提供了不同的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Spectra of Principal Submatrices in Rotationally Invariant Hermitian Random Matrices and the Markov– Krein Correspondence
We prove a concentration phenomenon on the empirical eigenvalue distribution (EED) of the principal submatrix in a random hermitian matrix whose distribution is invariant under unitary conjugacy; for example, this class includes GUE (Gaussian Unitary Ensemble) and Wishart matrices. More precisely, if the EED of the whole matrix converges to some deterministic probability measure m, then its fluctuation from the EED of the principal submatrix, after a rescaling, concentrates at the Rayleigh measure (in general, a Schwartz distribution) associated with m by the Markov–Krein correspondence. For the proof, we use the moment method with Weingarten calculus and free probability. At some stage of calculations, the proof requires a relation between the moments of the Rayleigh measure and free cumulants of m. This formula is more or less known, but we provide a different proof by observing a combinatorial structure of non-crossing partitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信