非阿基米德Pfaffin和Noetherian函数的点计数和Wilkie猜想

IF 2.3 1区 数学 Q1 MATHEMATICS
Gal Binyamini, R. Cluckers, D. Novikov
{"title":"非阿基米德Pfaffin和Noetherian函数的点计数和Wilkie猜想","authors":"Gal Binyamini, R. Cluckers, D. Novikov","doi":"10.1215/00127094-2022-0013","DOIUrl":null,"url":null,"abstract":"We consider the problem of counting polynomial curves on analytic or definable subsets over the field ${\\mathbb{C}}(\\!(t)\\!)$, as a function of the degree $r$. A result of this type could be expected by analogy with the classical Pila-Wilkie counting theorem in the archimean situation. \nSome non-archimedean analogs of this type have been developed in the work of Cluckers-Comte-Loeser for the field ${\\mathbb{Q}}_p$, but the situation in ${\\mathbb{C}}(\\!(t)\\!)$ appears to be significantly different. We prove that the set of polynomial curves of a fixed degree $r$ on the transcendental part of a subanalytic set over ${\\mathbb{C}}(\\!(t)\\!)$ is automatically finite, but give examples showing that their number may grow arbitrarily quickly even for analytic sets. Thus no analog of the Pila-Wilkie theorem can be expected to hold for general analytic sets. On the other hand we show that if one restricts to varieties defined by Pfaffian or Noetherian functions, then the number grows at most polynomially in $r$, thus showing that the analog of Wilkie's conjecture does hold in this context.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Point counting and Wilkie’s conjecture for non-Archimedean Pfaffian and Noetherian functions\",\"authors\":\"Gal Binyamini, R. Cluckers, D. Novikov\",\"doi\":\"10.1215/00127094-2022-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of counting polynomial curves on analytic or definable subsets over the field ${\\\\mathbb{C}}(\\\\!(t)\\\\!)$, as a function of the degree $r$. A result of this type could be expected by analogy with the classical Pila-Wilkie counting theorem in the archimean situation. \\nSome non-archimedean analogs of this type have been developed in the work of Cluckers-Comte-Loeser for the field ${\\\\mathbb{Q}}_p$, but the situation in ${\\\\mathbb{C}}(\\\\!(t)\\\\!)$ appears to be significantly different. We prove that the set of polynomial curves of a fixed degree $r$ on the transcendental part of a subanalytic set over ${\\\\mathbb{C}}(\\\\!(t)\\\\!)$ is automatically finite, but give examples showing that their number may grow arbitrarily quickly even for analytic sets. Thus no analog of the Pila-Wilkie theorem can be expected to hold for general analytic sets. On the other hand we show that if one restricts to varieties defined by Pfaffian or Noetherian functions, then the number grows at most polynomially in $r$, thus showing that the analog of Wilkie's conjecture does hold in this context.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0013\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0013","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑域${\mathbb{C}}(\!(t)\!)$上解析或可定义子集上的多项式曲线的计数问题,作为度数$r$的函数。这种类型的结果可以通过与经典的Pila-Wilkie计数定理在阿基米德情形下的类比来预期。在Cluckers Comte Loeser的工作中,已经为字段${\mathbb{Q}}_p$开发了一些这种类型的非阿基米德类似物,但在${\ mathbb{C}(\!(t)\!)$中的情况似乎明显不同。我们证明了${\mathbb{C}}(\!(t)\!)$上的子分析集超越部分上的固定次数$r$的多项式曲线集是自动有限的,但给出的例子表明,即使对于分析集,它们的数量也可以任意快速增长。因此,Pila-Wilkie定理的任何类似物都不可能适用于一般分析集。另一方面,我们证明,如果限制由Pfafian或Noetherian函数定义的变种,那么这个数字最多以$r$的形式多项式增长,从而表明Wilkie猜想的类似物在这种情况下确实成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Point counting and Wilkie’s conjecture for non-Archimedean Pfaffian and Noetherian functions
We consider the problem of counting polynomial curves on analytic or definable subsets over the field ${\mathbb{C}}(\!(t)\!)$, as a function of the degree $r$. A result of this type could be expected by analogy with the classical Pila-Wilkie counting theorem in the archimean situation. Some non-archimedean analogs of this type have been developed in the work of Cluckers-Comte-Loeser for the field ${\mathbb{Q}}_p$, but the situation in ${\mathbb{C}}(\!(t)\!)$ appears to be significantly different. We prove that the set of polynomial curves of a fixed degree $r$ on the transcendental part of a subanalytic set over ${\mathbb{C}}(\!(t)\!)$ is automatically finite, but give examples showing that their number may grow arbitrarily quickly even for analytic sets. Thus no analog of the Pila-Wilkie theorem can be expected to hold for general analytic sets. On the other hand we show that if one restricts to varieties defined by Pfaffian or Noetherian functions, then the number grows at most polynomially in $r$, thus showing that the analog of Wilkie's conjecture does hold in this context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信