两性群体非线性年龄结构模型的零可控性

Q3 Mathematics
A. Traoré, Okana S. Sougué, Y. Simporé, O. Traore
{"title":"两性群体非线性年龄结构模型的零可控性","authors":"A. Traoré, Okana S. Sougué, Y. Simporé, O. Traore","doi":"10.1155/2021/6666942","DOIUrl":null,"url":null,"abstract":"This paper is devoted to study the null controllability properties of a nonlinear age and two-sex population dynamics structured model without spatial structure. Here, the nonlinearity and the couplage are at the birth level. In this work, we consider two cases of null controllability problem. The first problem is related to the extinction of male and female subpopulation density. The second case concerns the null controllability of male or female subpopulation individuals. In both cases, if \n \n A\n \n is the maximal age, a time interval of duration \n \n A\n \n after the extinction of males or females, one must get the total extinction of the population. Our method uses first an observability inequality related to the adjoint of an auxiliary system, a null controllability of the linear auxiliary system, and after Kakutani’s fixed-point theorem.","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Null Controllability of a Nonlinear Age Structured Model for a Two-Sex Population\",\"authors\":\"A. Traoré, Okana S. Sougué, Y. Simporé, O. Traore\",\"doi\":\"10.1155/2021/6666942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to study the null controllability properties of a nonlinear age and two-sex population dynamics structured model without spatial structure. Here, the nonlinearity and the couplage are at the birth level. In this work, we consider two cases of null controllability problem. The first problem is related to the extinction of male and female subpopulation density. The second case concerns the null controllability of male or female subpopulation individuals. In both cases, if \\n \\n A\\n \\n is the maximal age, a time interval of duration \\n \\n A\\n \\n after the extinction of males or females, one must get the total extinction of the population. Our method uses first an observability inequality related to the adjoint of an auxiliary system, a null controllability of the linear auxiliary system, and after Kakutani’s fixed-point theorem.\",\"PeriodicalId\":7061,\"journal\":{\"name\":\"Abstract and Applied Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstract and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6666942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6666942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一个不含空间结构的非线性年龄、两性种群动态结构模型的零可控性。在这里,非线性和耦合是在出生水平。本文考虑两种情况下的零可控性问题。第一个问题与雄性和雌性亚种群密度的消失有关。第二个案例涉及男性或女性亚群个体的无可控性。在这两种情况下,如果A是最大年龄,在雄性或雌性灭绝后的持续时间间隔A,就必须得到种群的总灭绝。我们的方法首先使用与辅助系统的伴随相关的可观察性不等式,线性辅助系统的零可控性,并在Kakutani的不动点定理之后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Null Controllability of a Nonlinear Age Structured Model for a Two-Sex Population
This paper is devoted to study the null controllability properties of a nonlinear age and two-sex population dynamics structured model without spatial structure. Here, the nonlinearity and the couplage are at the birth level. In this work, we consider two cases of null controllability problem. The first problem is related to the extinction of male and female subpopulation density. The second case concerns the null controllability of male or female subpopulation individuals. In both cases, if A is the maximal age, a time interval of duration A after the extinction of males or females, one must get the total extinction of the population. Our method uses first an observability inequality related to the adjoint of an auxiliary system, a null controllability of the linear auxiliary system, and after Kakutani’s fixed-point theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
36
审稿时长
3.5 months
期刊介绍: Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信