基于近似动态规划的四旋翼无人机最优控制与自适应学习

Q4 Computer Science
Joelson Miller Bezerra De Souza, Patricia H. Moraes Rego, Guilherme Bonfim De Sousa, Janes Valdo Rodrigues Lima
{"title":"基于近似动态规划的四旋翼无人机最优控制与自适应学习","authors":"Joelson Miller Bezerra De Souza, Patricia H. Moraes Rego, Guilherme Bonfim De Sousa, Janes Valdo Rodrigues Lima","doi":"10.22456/2175-2745.121388","DOIUrl":null,"url":null,"abstract":"The development of an optimal controller for stabilization of a quadrotor system using an adaptive critic structure based on policy iteration schemes is proposed in this paper. This approach is inserted in the context of Approximate Dynamic Programming and it is used to solve optimal decision problems on-line, without requiring complete knowledge of the system dynamics model to be controlled. The main feature of the adaptive critic design method that allows for on-line implementation is that it solves the Bellman optimality equation in a forward-in-time fashion, whereas traditional dynamic programming requires a backward-in-time procedure. This feedback control design technique is able to tune the controller parameters on-line in the presence of variations in plant dynamics and external disturbances using data measured along the system trajectories. Computational simulation results based on a quadrotor model demonstrate the effectiveness of the proposed control scheme.","PeriodicalId":53421,"journal":{"name":"Revista de Informatica Teorica e Aplicada","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Control and Adaptive Learning for Stabilization of a Quadrotor-type Unmanned Aerial Vehicle via Approximate Dynamic Programming\",\"authors\":\"Joelson Miller Bezerra De Souza, Patricia H. Moraes Rego, Guilherme Bonfim De Sousa, Janes Valdo Rodrigues Lima\",\"doi\":\"10.22456/2175-2745.121388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of an optimal controller for stabilization of a quadrotor system using an adaptive critic structure based on policy iteration schemes is proposed in this paper. This approach is inserted in the context of Approximate Dynamic Programming and it is used to solve optimal decision problems on-line, without requiring complete knowledge of the system dynamics model to be controlled. The main feature of the adaptive critic design method that allows for on-line implementation is that it solves the Bellman optimality equation in a forward-in-time fashion, whereas traditional dynamic programming requires a backward-in-time procedure. This feedback control design technique is able to tune the controller parameters on-line in the presence of variations in plant dynamics and external disturbances using data measured along the system trajectories. Computational simulation results based on a quadrotor model demonstrate the effectiveness of the proposed control scheme.\",\"PeriodicalId\":53421,\"journal\":{\"name\":\"Revista de Informatica Teorica e Aplicada\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Informatica Teorica e Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22456/2175-2745.121388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Informatica Teorica e Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.121388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于策略迭代方案的自适应临界结构的四旋翼系统最优镇定控制器。该方法被插入到近似动态规划的上下文中,用于在线解决最优决策问题,而不需要对要控制的系统动力学模型有完整的了解。允许在线实现的自适应评论家设计方法的主要特点是,它以时间向前的方式求解Bellman最优方程,而传统的动态规划需要时间向后的过程。这种反馈控制设计技术能够在存在工厂动态变化和外部扰动的情况下,使用沿系统轨迹测量的数据在线调整控制器参数。基于四旋翼模型的计算仿真结果证明了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Control and Adaptive Learning for Stabilization of a Quadrotor-type Unmanned Aerial Vehicle via Approximate Dynamic Programming
The development of an optimal controller for stabilization of a quadrotor system using an adaptive critic structure based on policy iteration schemes is proposed in this paper. This approach is inserted in the context of Approximate Dynamic Programming and it is used to solve optimal decision problems on-line, without requiring complete knowledge of the system dynamics model to be controlled. The main feature of the adaptive critic design method that allows for on-line implementation is that it solves the Bellman optimality equation in a forward-in-time fashion, whereas traditional dynamic programming requires a backward-in-time procedure. This feedback control design technique is able to tune the controller parameters on-line in the presence of variations in plant dynamics and external disturbances using data measured along the system trajectories. Computational simulation results based on a quadrotor model demonstrate the effectiveness of the proposed control scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista de Informatica Teorica e Aplicada
Revista de Informatica Teorica e Aplicada Computer Science-Computer Science (all)
CiteScore
0.90
自引率
0.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信