{"title":"射影空间中曲线的Hilbert格式的微分几何","authors":"R. Bielawski, Carolin Peternell","doi":"10.1515/coma-2019-0018","DOIUrl":null,"url":null,"abstract":"Abstract We describe the natural geometry of Hilbert schemes of curves in ℙ3and, in some cases, in ℙn, n ≥ 4.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"6 1","pages":"335 - 347"},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2019-0018","citationCount":"4","resultStr":"{\"title\":\"Differential geometry of Hilbert schemes of curves in a projective space\",\"authors\":\"R. Bielawski, Carolin Peternell\",\"doi\":\"10.1515/coma-2019-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We describe the natural geometry of Hilbert schemes of curves in ℙ3and, in some cases, in ℙn, n ≥ 4.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"6 1\",\"pages\":\"335 - 347\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/coma-2019-0018\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2019-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2019-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.