对PiM还是不对PiM

Q3 Computer Science
Queue Pub Date : 2022-12-31 DOI:10.1145/3580503
Gabriel Falcao, João Dinis Ferreira
{"title":"对PiM还是不对PiM","authors":"Gabriel Falcao, João Dinis Ferreira","doi":"10.1145/3580503","DOIUrl":null,"url":null,"abstract":"As artificial intelligence becomes a pervasive tool for the billions of IoT (Internet of things) devices at the edge, the data movement bottleneck imposes severe limitations on the performance and autonomy of these systems. PiM (processing-in-memory) is emerging as a way of mitigating the data movement bottleneck while satisfying the stringent performance, energy efficiency, and accuracy requirements of edge imaging applications that rely on CNNs (convolutional neural networks).","PeriodicalId":39042,"journal":{"name":"Queue","volume":"20 1","pages":"9 - 34"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"To PiM or Not to PiM\",\"authors\":\"Gabriel Falcao, João Dinis Ferreira\",\"doi\":\"10.1145/3580503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As artificial intelligence becomes a pervasive tool for the billions of IoT (Internet of things) devices at the edge, the data movement bottleneck imposes severe limitations on the performance and autonomy of these systems. PiM (processing-in-memory) is emerging as a way of mitigating the data movement bottleneck while satisfying the stringent performance, energy efficiency, and accuracy requirements of edge imaging applications that rely on CNNs (convolutional neural networks).\",\"PeriodicalId\":39042,\"journal\":{\"name\":\"Queue\",\"volume\":\"20 1\",\"pages\":\"9 - 34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Queue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3580503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Queue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3580503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

随着人工智能成为数十亿处于边缘的物联网设备的普及工具,数据移动瓶颈对这些系统的性能和自主性造成了严重限制。PiM(内存处理)正在成为一种缓解数据移动瓶颈的方法,同时满足依赖CNN(卷积神经网络)的边缘成像应用程序的严格性能、能效和准确性要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
To PiM or Not to PiM
As artificial intelligence becomes a pervasive tool for the billions of IoT (Internet of things) devices at the edge, the data movement bottleneck imposes severe limitations on the performance and autonomy of these systems. PiM (processing-in-memory) is emerging as a way of mitigating the data movement bottleneck while satisfying the stringent performance, energy efficiency, and accuracy requirements of edge imaging applications that rely on CNNs (convolutional neural networks).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Queue
Queue Computer Science-Computer Science (all)
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信