M-Lauricella超几何函数:分数阶微分方程的积分表示与解

IF 0.7 Q2 MATHEMATICS
E. Ata
{"title":"M-Lauricella超几何函数:分数阶微分方程的积分表示与解","authors":"E. Ata","doi":"10.31801/cfsuasmas.1144644","DOIUrl":null,"url":null,"abstract":"In this paper, using the modified beta function involving the generalized M-series in its kernel, we described new extensions for the Lauricella hypergeometric functions $F_{A}^{(r)}$, $F_{B}^{(r)}$, $F_{C}^{(r)}$ and $F_{D}^{(r)}$. Furthermore, we obtained various integral representations for the newly defined extended Lauricella hypergeometric functions. Then, we obtained solution of fractional differential equations involving new extensions of Lauricella hypergeometric functions, as examples.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"M-Lauricella hypergeometric functions: integral representations and solutions of fractional differential equations\",\"authors\":\"E. Ata\",\"doi\":\"10.31801/cfsuasmas.1144644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, using the modified beta function involving the generalized M-series in its kernel, we described new extensions for the Lauricella hypergeometric functions $F_{A}^{(r)}$, $F_{B}^{(r)}$, $F_{C}^{(r)}$ and $F_{D}^{(r)}$. Furthermore, we obtained various integral representations for the newly defined extended Lauricella hypergeometric functions. Then, we obtained solution of fractional differential equations involving new extensions of Lauricella hypergeometric functions, as examples.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1144644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1144644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文利用核中包含广义M-级数的改进贝塔函数,描述了Lauricella超几何函数$F_。此外,我们还得到了新定义的扩展Lauricella超几何函数的各种积分表示。然后,以Lauricella超几何函数的新扩展为例,得到了分数阶微分方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
M-Lauricella hypergeometric functions: integral representations and solutions of fractional differential equations
In this paper, using the modified beta function involving the generalized M-series in its kernel, we described new extensions for the Lauricella hypergeometric functions $F_{A}^{(r)}$, $F_{B}^{(r)}$, $F_{C}^{(r)}$ and $F_{D}^{(r)}$. Furthermore, we obtained various integral representations for the newly defined extended Lauricella hypergeometric functions. Then, we obtained solution of fractional differential equations involving new extensions of Lauricella hypergeometric functions, as examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信