R2中的梯度变分问题

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
R. Kenyon, I. Prause
{"title":"R2中的梯度变分问题","authors":"R. Kenyon, I. Prause","doi":"10.1215/00127094-2022-0036","DOIUrl":null,"url":null,"abstract":"We prove a new integrability principle for gradient variational problems in $\\mathbb{R}^2$, showing that solutions are explicitly parameterized by $\\kappa$-harmonic functions, that is, functions which are harmonic for the laplacian with varying conductivity $\\kappa$, where $\\kappa$ is the square root of the Hessian determinant of the surface tension.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Gradient variational problems in R2\",\"authors\":\"R. Kenyon, I. Prause\",\"doi\":\"10.1215/00127094-2022-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a new integrability principle for gradient variational problems in $\\\\mathbb{R}^2$, showing that solutions are explicitly parameterized by $\\\\kappa$-harmonic functions, that is, functions which are harmonic for the laplacian with varying conductivity $\\\\kappa$, where $\\\\kappa$ is the square root of the Hessian determinant of the surface tension.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 5

摘要

我们证明了$\mathbb{R}^2$中梯度变分问题的一个新的可积性原理,表明解是由$\kappa$调和函数显式参数化的,也就是说,对于具有不同电导率的拉普拉斯算子来说,函数是调和函数,其中$\kapa$是表面张力的Hessian行列式的平方根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient variational problems in R2
We prove a new integrability principle for gradient variational problems in $\mathbb{R}^2$, showing that solutions are explicitly parameterized by $\kappa$-harmonic functions, that is, functions which are harmonic for the laplacian with varying conductivity $\kappa$, where $\kappa$ is the square root of the Hessian determinant of the surface tension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信