{"title":"用于无人机自主探测的升级轨迹规划方法","authors":"T. Zhang, Jiajie Yu, Jiaqi Li, Jianli Wei","doi":"10.1177/17298806221109697","DOIUrl":null,"url":null,"abstract":"Autonomous exploration is grounded on target decision and trajectory planning, which is widely deployed on unmanned aerial vehicles. However, existing methods generally only focus on the exploration effect of target decision but neglect the environment information gained with trajectory planning during flight, resulting in redundant exploration trajectories and low exploration efficiency. This article proposes an upgraded method of trajectory planning for autonomous exploration work. We design a fresh cost term considering the frontier information in the part of trajectory optimization. Besides, yaw angles are planned independently to catch more environment information during flight. We present extensive simulations and real-world tests. The results show that our proposed method reduces the exploration cost time by 10–15% compared with the previous one.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Upgraded trajectory planning method deployed in autonomous exploration for unmanned aerial vehicle\",\"authors\":\"T. Zhang, Jiajie Yu, Jiaqi Li, Jianli Wei\",\"doi\":\"10.1177/17298806221109697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous exploration is grounded on target decision and trajectory planning, which is widely deployed on unmanned aerial vehicles. However, existing methods generally only focus on the exploration effect of target decision but neglect the environment information gained with trajectory planning during flight, resulting in redundant exploration trajectories and low exploration efficiency. This article proposes an upgraded method of trajectory planning for autonomous exploration work. We design a fresh cost term considering the frontier information in the part of trajectory optimization. Besides, yaw angles are planned independently to catch more environment information during flight. We present extensive simulations and real-world tests. The results show that our proposed method reduces the exploration cost time by 10–15% compared with the previous one.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806221109697\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221109697","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Upgraded trajectory planning method deployed in autonomous exploration for unmanned aerial vehicle
Autonomous exploration is grounded on target decision and trajectory planning, which is widely deployed on unmanned aerial vehicles. However, existing methods generally only focus on the exploration effect of target decision but neglect the environment information gained with trajectory planning during flight, resulting in redundant exploration trajectories and low exploration efficiency. This article proposes an upgraded method of trajectory planning for autonomous exploration work. We design a fresh cost term considering the frontier information in the part of trajectory optimization. Besides, yaw angles are planned independently to catch more environment information during flight. We present extensive simulations and real-world tests. The results show that our proposed method reduces the exploration cost time by 10–15% compared with the previous one.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.