{"title":"负弯曲流形上马尔可夫链的反常递推","authors":"J. Armstrong, Tim King","doi":"10.1017/jpr.2022.40","DOIUrl":null,"url":null,"abstract":"Abstract We present a recurrence–transience classification for discrete-time Markov chains on manifolds with negative curvature. Our classification depends only on geometric quantities associated to the increments of the chain, defined via the Riemannian exponential map. We deduce that a recurrent chain that has zero average drift at every point cannot be uniformly elliptic, unlike in the Euclidean case. We also give natural examples of zero-drift recurrent chains on negatively curved manifolds, including on a stochastically incomplete manifold.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"60 1","pages":"204 - 222"},"PeriodicalIF":0.7000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomalous recurrence of Markov chains on negatively curved manifolds\",\"authors\":\"J. Armstrong, Tim King\",\"doi\":\"10.1017/jpr.2022.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a recurrence–transience classification for discrete-time Markov chains on manifolds with negative curvature. Our classification depends only on geometric quantities associated to the increments of the chain, defined via the Riemannian exponential map. We deduce that a recurrent chain that has zero average drift at every point cannot be uniformly elliptic, unlike in the Euclidean case. We also give natural examples of zero-drift recurrent chains on negatively curved manifolds, including on a stochastically incomplete manifold.\",\"PeriodicalId\":50256,\"journal\":{\"name\":\"Journal of Applied Probability\",\"volume\":\"60 1\",\"pages\":\"204 - 222\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/jpr.2022.40\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2022.40","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Anomalous recurrence of Markov chains on negatively curved manifolds
Abstract We present a recurrence–transience classification for discrete-time Markov chains on manifolds with negative curvature. Our classification depends only on geometric quantities associated to the increments of the chain, defined via the Riemannian exponential map. We deduce that a recurrent chain that has zero average drift at every point cannot be uniformly elliptic, unlike in the Euclidean case. We also give natural examples of zero-drift recurrent chains on negatively curved manifolds, including on a stochastically incomplete manifold.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.