弱椭圆型方程粘性解的极大值原理

IF 0.2 Q4 MATHEMATICS
A. Vitolo
{"title":"弱椭圆型方程粘性解的极大值原理","authors":"A. Vitolo","doi":"10.6092/ISSN.2240-2829/10395","DOIUrl":null,"url":null,"abstract":"Maximum principles play an important role in the theory of elliptic equations. In the last decades there have been many contributions related to the development of fully nonlinear equations and viscosity solutions. Here we consider degenerate elliptic equations, where the main term  is a partial trace of the Hessian matrix of the solution. We establish maximum principles in domains that are unbounded in some directions, contained in slabs, and extended  maximum principles, which lead to removable singularity results.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"10 1","pages":"110-136"},"PeriodicalIF":0.2000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Maximum principles for viscosity solutions of weakly elliptic equations\",\"authors\":\"A. Vitolo\",\"doi\":\"10.6092/ISSN.2240-2829/10395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum principles play an important role in the theory of elliptic equations. In the last decades there have been many contributions related to the development of fully nonlinear equations and viscosity solutions. Here we consider degenerate elliptic equations, where the main term  is a partial trace of the Hessian matrix of the solution. We establish maximum principles in domains that are unbounded in some directions, contained in slabs, and extended  maximum principles, which lead to removable singularity results.\",\"PeriodicalId\":41199,\"journal\":{\"name\":\"Bruno Pini Mathematical Analysis Seminar\",\"volume\":\"10 1\",\"pages\":\"110-136\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bruno Pini Mathematical Analysis Seminar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.2240-2829/10395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/10395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

极大原理在椭圆方程理论中占有重要地位。在过去的几十年里,有许多与全非线性方程和粘度解的发展有关的贡献。这里我们考虑退化椭圆方程,其中主要项是解的Hessian矩阵的部分迹。我们建立了在某些方向上无界的域的极大值原理,包含在平板中,并扩展了极大值原理,从而得到了可移除奇点的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum principles for viscosity solutions of weakly elliptic equations
Maximum principles play an important role in the theory of elliptic equations. In the last decades there have been many contributions related to the development of fully nonlinear equations and viscosity solutions. Here we consider degenerate elliptic equations, where the main term  is a partial trace of the Hessian matrix of the solution. We establish maximum principles in domains that are unbounded in some directions, contained in slabs, and extended  maximum principles, which lead to removable singularity results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信