包含消失势和临界指数的退化广义拟线性Schrödinger方程的解

IF 0.7 4区 数学 Q2 MATHEMATICS
Yong Huang, Zhouxin Li, X. Yuan
{"title":"包含消失势和临界指数的退化广义拟线性Schrödinger方程的解","authors":"Yong Huang, Zhouxin Li, X. Yuan","doi":"10.12775/tmna.2022.045","DOIUrl":null,"url":null,"abstract":"In this paper, a class of degenerative quasilinear Schrödinger equations with\n vanishing potentials and critical Sobolev exponents is considered.\nThe main operator involved in these equations is not strictly elliptic. Under suitable conditions, the existence of nontrivial solutions to the equations is obtained\nby employing variational methods and the decay rate of the solutions is established.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solutions to degenerative generalized quasilinear Schrödinger equations involving vanishing potentials and critical exponent\",\"authors\":\"Yong Huang, Zhouxin Li, X. Yuan\",\"doi\":\"10.12775/tmna.2022.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a class of degenerative quasilinear Schrödinger equations with\\n vanishing potentials and critical Sobolev exponents is considered.\\nThe main operator involved in these equations is not strictly elliptic. Under suitable conditions, the existence of nontrivial solutions to the equations is obtained\\nby employing variational methods and the decay rate of the solutions is established.\",\"PeriodicalId\":23130,\"journal\":{\"name\":\"Topological Methods in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Methods in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.045\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有消失势和临界Sobolev指数的退化拟线性Schrödinger方程。这些方程中涉及的主要算子不是严格的椭圆算子。在适当的条件下,利用变分方法得到了方程非平凡解的存在性,并建立了解的衰减率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solutions to degenerative generalized quasilinear Schrödinger equations involving vanishing potentials and critical exponent
In this paper, a class of degenerative quasilinear Schrödinger equations with vanishing potentials and critical Sobolev exponents is considered. The main operator involved in these equations is not strictly elliptic. Under suitable conditions, the existence of nontrivial solutions to the equations is obtained by employing variational methods and the decay rate of the solutions is established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信