与谱三元组相关联的callia型算符

IF 0.7 2区 数学 Q2 MATHEMATICS
H. Schulz-Baldes, T. Stoiber
{"title":"与谱三元组相关联的callia型算符","authors":"H. Schulz-Baldes, T. Stoiber","doi":"10.4171/jncg/505","DOIUrl":null,"url":null,"abstract":"Callias-type (or Dirac-Schr\\\"odinger) operators associated to abstract semifinite spectral triples are introduced and their indices are computed in terms of an associated index pairing derived from the spectral triple. The result is then interpreted as an index theorem for a non-commutative analogue of spectral flow. Both even and odd spectral triples are considered, and both commutative and non-commutative examples are given.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Callias-type operators associated to spectral triples\",\"authors\":\"H. Schulz-Baldes, T. Stoiber\",\"doi\":\"10.4171/jncg/505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Callias-type (or Dirac-Schr\\\\\\\"odinger) operators associated to abstract semifinite spectral triples are introduced and their indices are computed in terms of an associated index pairing derived from the spectral triple. The result is then interpreted as an index theorem for a non-commutative analogue of spectral flow. Both even and odd spectral triples are considered, and both commutative and non-commutative examples are given.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/505\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/505","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

引入了与抽象半有限谱三元组相关的callias型(或Dirac-Schr\ odinger)算子,并根据从谱三元组导出的关联索引对计算了它们的索引。然后将结果解释为谱流的非交换模拟的指标定理。同时考虑了奇偶谱三元组,并给出了交换和非交换的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Callias-type operators associated to spectral triples
Callias-type (or Dirac-Schr\"odinger) operators associated to abstract semifinite spectral triples are introduced and their indices are computed in terms of an associated index pairing derived from the spectral triple. The result is then interpreted as an index theorem for a non-commutative analogue of spectral flow. Both even and odd spectral triples are considered, and both commutative and non-commutative examples are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信