Y. Shin, Byeong-Sun Choi, Kyung-Chang Kim, Kisoon Kim, C. Yoon
{"title":"小分子抑制剂对HIV-1感染肌动蛋白细胞骨架动力学的不同影响","authors":"Y. Shin, Byeong-Sun Choi, Kyung-Chang Kim, Kisoon Kim, C. Yoon","doi":"10.4167/JBV.2019.49.2.69","DOIUrl":null,"url":null,"abstract":"©This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ license/by-nc/3.0/). The dynamics of the actin cytoskeleton plays a pivotal role in the process of cell division, the transportation of organelles, vesicle trafficking and cell movement. Human immunodeficiency virus type 1 (HIV-1) hijacks the actin dynamics network during the viral entry and migration of the pre-integration complex (PIC) into the nucleus. Actin dynamics linked to HIV-1 has emerged as a potent therapeutic target against HIV infection. Although some inhibitors have been intensely analyzed with regard to HIV-1 infection, their effects are sometimes disputed and the exact mechanisms for actin dynamics in HIV infection have not been well elucidated. In this study, the small molecules regulating HIV-1 infection from diverse inhibitors of the actin dynamic network were screened. Two compounds, including Chaetoglobosin A and CK-548, were observed to specifically bar the viral infection, while the cytochalasin family, 187-1, N-WASP inhibitor, Rho GTPase family inhibitors (EHop-016, CID44216842, and ML-141) and LIMK inhibitor (LIM domain kinase inhibitor) increased the viral infection without cytotoxicity within a range of ~ μM. However, previously known inhibitory compounds of HIV-1 infection, such as Latrunculin A, Jasplakinolide, Wiskostatin and Swinholide A, exhibited either an inhibitory effect on HIV-1 infection combined with severe cytotoxicity or showed no effects. Our data indicate that Chaetoglobosin A and CK-548 have considerable potential for development as new therapeutic drugs for the treatment of HIV infection. In addition, the newly identified roles of Cytochalasins and some inhibitors of Rho GTPase and LIMK may provide fundamental knowledge for understanding the complicated actin dynamic pathway when infected by HIV-1. Remarkably, the newly defined action modes of the inhibitors may be helpful in developing potent anti-HIV drugs that target the actin network, which are required for HIV infection.","PeriodicalId":39739,"journal":{"name":"Journal of Bacteriology and Virology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4167/JBV.2019.49.2.69","citationCount":"2","resultStr":"{\"title\":\"Diverse Effects of Small Molecule Inhibitors on Actin Cytoskeleton Dynamics in HIV-1 Infection\",\"authors\":\"Y. Shin, Byeong-Sun Choi, Kyung-Chang Kim, Kisoon Kim, C. Yoon\",\"doi\":\"10.4167/JBV.2019.49.2.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"©This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ license/by-nc/3.0/). The dynamics of the actin cytoskeleton plays a pivotal role in the process of cell division, the transportation of organelles, vesicle trafficking and cell movement. Human immunodeficiency virus type 1 (HIV-1) hijacks the actin dynamics network during the viral entry and migration of the pre-integration complex (PIC) into the nucleus. Actin dynamics linked to HIV-1 has emerged as a potent therapeutic target against HIV infection. Although some inhibitors have been intensely analyzed with regard to HIV-1 infection, their effects are sometimes disputed and the exact mechanisms for actin dynamics in HIV infection have not been well elucidated. In this study, the small molecules regulating HIV-1 infection from diverse inhibitors of the actin dynamic network were screened. Two compounds, including Chaetoglobosin A and CK-548, were observed to specifically bar the viral infection, while the cytochalasin family, 187-1, N-WASP inhibitor, Rho GTPase family inhibitors (EHop-016, CID44216842, and ML-141) and LIMK inhibitor (LIM domain kinase inhibitor) increased the viral infection without cytotoxicity within a range of ~ μM. However, previously known inhibitory compounds of HIV-1 infection, such as Latrunculin A, Jasplakinolide, Wiskostatin and Swinholide A, exhibited either an inhibitory effect on HIV-1 infection combined with severe cytotoxicity or showed no effects. Our data indicate that Chaetoglobosin A and CK-548 have considerable potential for development as new therapeutic drugs for the treatment of HIV infection. In addition, the newly identified roles of Cytochalasins and some inhibitors of Rho GTPase and LIMK may provide fundamental knowledge for understanding the complicated actin dynamic pathway when infected by HIV-1. Remarkably, the newly defined action modes of the inhibitors may be helpful in developing potent anti-HIV drugs that target the actin network, which are required for HIV infection.\",\"PeriodicalId\":39739,\"journal\":{\"name\":\"Journal of Bacteriology and Virology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4167/JBV.2019.49.2.69\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology and Virology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4167/JBV.2019.49.2.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology and Virology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4167/JBV.2019.49.2.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 2
Diverse Effects of Small Molecule Inhibitors on Actin Cytoskeleton Dynamics in HIV-1 Infection
©This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ license/by-nc/3.0/). The dynamics of the actin cytoskeleton plays a pivotal role in the process of cell division, the transportation of organelles, vesicle trafficking and cell movement. Human immunodeficiency virus type 1 (HIV-1) hijacks the actin dynamics network during the viral entry and migration of the pre-integration complex (PIC) into the nucleus. Actin dynamics linked to HIV-1 has emerged as a potent therapeutic target against HIV infection. Although some inhibitors have been intensely analyzed with regard to HIV-1 infection, their effects are sometimes disputed and the exact mechanisms for actin dynamics in HIV infection have not been well elucidated. In this study, the small molecules regulating HIV-1 infection from diverse inhibitors of the actin dynamic network were screened. Two compounds, including Chaetoglobosin A and CK-548, were observed to specifically bar the viral infection, while the cytochalasin family, 187-1, N-WASP inhibitor, Rho GTPase family inhibitors (EHop-016, CID44216842, and ML-141) and LIMK inhibitor (LIM domain kinase inhibitor) increased the viral infection without cytotoxicity within a range of ~ μM. However, previously known inhibitory compounds of HIV-1 infection, such as Latrunculin A, Jasplakinolide, Wiskostatin and Swinholide A, exhibited either an inhibitory effect on HIV-1 infection combined with severe cytotoxicity or showed no effects. Our data indicate that Chaetoglobosin A and CK-548 have considerable potential for development as new therapeutic drugs for the treatment of HIV infection. In addition, the newly identified roles of Cytochalasins and some inhibitors of Rho GTPase and LIMK may provide fundamental knowledge for understanding the complicated actin dynamic pathway when infected by HIV-1. Remarkably, the newly defined action modes of the inhibitors may be helpful in developing potent anti-HIV drugs that target the actin network, which are required for HIV infection.