用作辅助胶结材料的机械活化尾矿

Q2 Engineering
S. Ramanathan, P. Perumal, M. Illikainen, P. Suraneni
{"title":"用作辅助胶结材料的机械活化尾矿","authors":"S. Ramanathan, P. Perumal, M. Illikainen, P. Suraneni","doi":"10.21809/RILEMTECHLETT.2021.143","DOIUrl":null,"url":null,"abstract":"Two mine tailings are evaluated for their potential as supplementary cementitious materials. The mine tailings were milled using two different methods – ball milling for 30 minutes and disc milling for durations ranging from 1 to 15 minutes. The modified R3 test was carried out on the mine tailings to quantify their reactivity. The reactivity of the disc milled tailings is greater than those of the ball milled tailings. Strong correlations are obtained between milling duration, median particle size, amorphous content, dissolved aluminum and silicon, and reactivity of the mine tailings. The milling energy results in an increase in the fineness and the amorphous content, which do not appreciably increase beyond a disc milling duration of 8 minutes. The reactivity increases significantly beyond a certain threshold fineness and amorphous content. Cementitious pastes were prepared at 30% supplementary cementitious materials replacement level at a water-to-cementitious materials ratio of 0.40. No negative effects of the mine tailings were observed at early ages in cement pastes based on isothermal calorimetry and thermogravimetric analysis, demonstrating the potential for these materials to be used as supplementary cementitious materials.","PeriodicalId":36420,"journal":{"name":"RILEM Technical Letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Mechanically activated mine tailings for use as supplementary cementitious materials\",\"authors\":\"S. Ramanathan, P. Perumal, M. Illikainen, P. Suraneni\",\"doi\":\"10.21809/RILEMTECHLETT.2021.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two mine tailings are evaluated for their potential as supplementary cementitious materials. The mine tailings were milled using two different methods – ball milling for 30 minutes and disc milling for durations ranging from 1 to 15 minutes. The modified R3 test was carried out on the mine tailings to quantify their reactivity. The reactivity of the disc milled tailings is greater than those of the ball milled tailings. Strong correlations are obtained between milling duration, median particle size, amorphous content, dissolved aluminum and silicon, and reactivity of the mine tailings. The milling energy results in an increase in the fineness and the amorphous content, which do not appreciably increase beyond a disc milling duration of 8 minutes. The reactivity increases significantly beyond a certain threshold fineness and amorphous content. Cementitious pastes were prepared at 30% supplementary cementitious materials replacement level at a water-to-cementitious materials ratio of 0.40. No negative effects of the mine tailings were observed at early ages in cement pastes based on isothermal calorimetry and thermogravimetric analysis, demonstrating the potential for these materials to be used as supplementary cementitious materials.\",\"PeriodicalId\":36420,\"journal\":{\"name\":\"RILEM Technical Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RILEM Technical Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21809/RILEMTECHLETT.2021.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RILEM Technical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21809/RILEMTECHLETT.2021.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 14

摘要

对两种尾矿作为补充胶凝材料的潜力进行了评价。采用球磨30分钟和圆盘磨1 ~ 15分钟两种不同的方法对尾矿进行磨矿。对尾矿进行了改良R3试验,量化了尾矿的反应性。盘磨尾矿的反应性比球磨尾矿的反应性大。磨矿时间、中位粒度、非晶含量、溶铝和溶硅与尾矿反应性有较强的相关性。铣削能量导致细度和非晶含量的增加,超过8分钟的圆盘铣削持续时间不会明显增加。超过一定的阈值细度和非晶态含量后,反应性显著提高。在水胶比0.40的条件下,以30%的补充胶凝材料替代水平制备胶凝体。等温量热分析和热重分析结果显示,尾矿在早期龄期未对水泥浆体产生负面影响,表明其具有作为补充胶凝材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanically activated mine tailings for use as supplementary cementitious materials
Two mine tailings are evaluated for their potential as supplementary cementitious materials. The mine tailings were milled using two different methods – ball milling for 30 minutes and disc milling for durations ranging from 1 to 15 minutes. The modified R3 test was carried out on the mine tailings to quantify their reactivity. The reactivity of the disc milled tailings is greater than those of the ball milled tailings. Strong correlations are obtained between milling duration, median particle size, amorphous content, dissolved aluminum and silicon, and reactivity of the mine tailings. The milling energy results in an increase in the fineness and the amorphous content, which do not appreciably increase beyond a disc milling duration of 8 minutes. The reactivity increases significantly beyond a certain threshold fineness and amorphous content. Cementitious pastes were prepared at 30% supplementary cementitious materials replacement level at a water-to-cementitious materials ratio of 0.40. No negative effects of the mine tailings were observed at early ages in cement pastes based on isothermal calorimetry and thermogravimetric analysis, demonstrating the potential for these materials to be used as supplementary cementitious materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RILEM Technical Letters
RILEM Technical Letters Materials Science-Materials Science (all)
CiteScore
5.00
自引率
0.00%
发文量
13
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信