有限域同构问题的一个签名方案

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
J. Hoffstein, J. Silverman, William Whyte, Zhenfei Zhang
{"title":"有限域同构问题的一个签名方案","authors":"J. Hoffstein, J. Silverman, William Whyte, Zhenfei Zhang","doi":"10.1515/jmc-2015-0050","DOIUrl":null,"url":null,"abstract":"Abstract In a recent paper the authors and their collaborators proposed a new hard problem, called the finite field isomorphism problem, and they used it to construct a fully homomorphic encryption scheme. In this paper, we investigate how one might build a digital signature scheme from this new problem. Intuitively, the hidden field isomorphism allows us to convert short vectors in the underlying lattice of one field into generic looking vectors in an isomorphic field.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"14 1","pages":"39 - 54"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2015-0050","citationCount":"2","resultStr":"{\"title\":\"A signature scheme from the finite field isomorphism problem\",\"authors\":\"J. Hoffstein, J. Silverman, William Whyte, Zhenfei Zhang\",\"doi\":\"10.1515/jmc-2015-0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In a recent paper the authors and their collaborators proposed a new hard problem, called the finite field isomorphism problem, and they used it to construct a fully homomorphic encryption scheme. In this paper, we investigate how one might build a digital signature scheme from this new problem. Intuitively, the hidden field isomorphism allows us to convert short vectors in the underlying lattice of one field into generic looking vectors in an isomorphic field.\",\"PeriodicalId\":43866,\"journal\":{\"name\":\"Journal of Mathematical Cryptology\",\"volume\":\"14 1\",\"pages\":\"39 - 54\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jmc-2015-0050\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmc-2015-0050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2015-0050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

摘要在最近的一篇论文中,作者和他们的合作者提出了一个新的难题,称为有限域同构问题,并用它构造了一个全同态加密方案。在本文中,我们研究了如何从这个新问题中构建数字签名方案。直观地说,隐域同构允许我们将一个域的底层格中的短向量转换为同构域中的泛型向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A signature scheme from the finite field isomorphism problem
Abstract In a recent paper the authors and their collaborators proposed a new hard problem, called the finite field isomorphism problem, and they used it to construct a fully homomorphic encryption scheme. In this paper, we investigate how one might build a digital signature scheme from this new problem. Intuitively, the hidden field isomorphism allows us to convert short vectors in the underlying lattice of one field into generic looking vectors in an isomorphic field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Cryptology
Journal of Mathematical Cryptology COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.70
自引率
8.30%
发文量
12
审稿时长
100 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信