{"title":"一类新的粗糙傅立叶积分算子的全局$L^{2}$有界性","authors":"Jiawei Dai, Qiang Huang","doi":"10.11650/tjm/220403","DOIUrl":null,"url":null,"abstract":". In this paper, we investigate the L 2 boundedness of Fourier integral operator T φ,a with rough symbol a ∈ L ∞ S mρ and rough phase φ ∈ L ∞ Φ 2 which satisfies (cid:12)(cid:12) { x : |∇ ξ φ ( x, ξ ) − y | ≤ r } (cid:12)(cid:12) ≤ C ( r n − 1 + r n ) for any ξ, y ∈ R n and r > 0. We obtain that T φ,a is bounded on L 2 if m < ρ ( n − 1) / 2 − n/ 2 when 0 ≤ ρ ≤ 1 / 2 or m < − ( n + 1) / 4 when 1 / 2 ≤ ρ ≤ 1. When ρ = 0 or n = 1, the condition of m is sharp. Moreover, the maximal wave operator is a special class of T φ,a which is studied in this paper. Thus, our main theorem substantially extends and improves some known results about the maximal wave operator.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global $L^{2}$-boundedness of a New Class of Rough Fourier Integral Operators\",\"authors\":\"Jiawei Dai, Qiang Huang\",\"doi\":\"10.11650/tjm/220403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we investigate the L 2 boundedness of Fourier integral operator T φ,a with rough symbol a ∈ L ∞ S mρ and rough phase φ ∈ L ∞ Φ 2 which satisfies (cid:12)(cid:12) { x : |∇ ξ φ ( x, ξ ) − y | ≤ r } (cid:12)(cid:12) ≤ C ( r n − 1 + r n ) for any ξ, y ∈ R n and r > 0. We obtain that T φ,a is bounded on L 2 if m < ρ ( n − 1) / 2 − n/ 2 when 0 ≤ ρ ≤ 1 / 2 or m < − ( n + 1) / 4 when 1 / 2 ≤ ρ ≤ 1. When ρ = 0 or n = 1, the condition of m is sharp. Moreover, the maximal wave operator is a special class of T φ,a which is studied in this paper. Thus, our main theorem substantially extends and improves some known results about the maximal wave operator.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
. 在这个L 2 boundedness》,这篇文章我们investigate傅立叶集成运营商Tφ和rough符号a∈a, L∞smρ和野蛮时期φ∈L∞Φ2萨蒂哪种fi冰(cid 12: 12) (cid) {x: |∇ξφ(x, yξ)−|≤r} (cid 12: 12) (cid)≤r C (n−1 + r∈r y n)为任何ξ,n和r > 0。我们得到那个φT,如果a是bounded on L 2 m <ρ(n−1)/ 2−n / 2当0≤ρ≤1 - 2或m <−(n + 1) / 4当1 / 2≤ρ≤1。当ρ= 0或n = 1, m是夏普之雾。而且,最大限度的浪潮是运营商a T特别届φ,哪种是studied in this paper)。因此,我们主要的物质扩展和一些最著名的结果关于最高浪潮运营商。
Global $L^{2}$-boundedness of a New Class of Rough Fourier Integral Operators
. In this paper, we investigate the L 2 boundedness of Fourier integral operator T φ,a with rough symbol a ∈ L ∞ S mρ and rough phase φ ∈ L ∞ Φ 2 which satisfies (cid:12)(cid:12) { x : |∇ ξ φ ( x, ξ ) − y | ≤ r } (cid:12)(cid:12) ≤ C ( r n − 1 + r n ) for any ξ, y ∈ R n and r > 0. We obtain that T φ,a is bounded on L 2 if m < ρ ( n − 1) / 2 − n/ 2 when 0 ≤ ρ ≤ 1 / 2 or m < − ( n + 1) / 4 when 1 / 2 ≤ ρ ≤ 1. When ρ = 0 or n = 1, the condition of m is sharp. Moreover, the maximal wave operator is a special class of T φ,a which is studied in this paper. Thus, our main theorem substantially extends and improves some known results about the maximal wave operator.