{R}和{Stan}的纵向项目反应建模及后验预测检验

IF 1.3
A. Scharl, Timo Gnambs
{"title":"{R}和{Stan}的纵向项目反应建模及后验预测检验","authors":"A. Scharl, Timo Gnambs","doi":"10.20982/tqmp.15.2.p075","DOIUrl":null,"url":null,"abstract":"aLeibniz Institute for Educational Trajectories bJohannes Kepler University Linz Abstract Item response theory is widely used in a variety of research fields. Among others, it is the de facto standard for test development and calibration in educational large-scale assessments. In this context, longitudinal modeling is of great importance to examine developmental trajectories in competences and identify predictors of academic success. Therefore, this paper describes various multidimensional item response models that can be used in a longitudinal setting and how to estimate change in a Bayesian framework using the statistical software Stan. Moreover, model evaluation techniques such as the widely applicable information criterion and posterior predictive checking with several discrepancy measures suited for Bayesian item response modeling are presented. Finally, an empirical application is described that examines change in mathematical competence between grades 5 and 7 forN = 1, 371 German students using a Bayesian longitudinal item response model.","PeriodicalId":93055,"journal":{"name":"The quantitative methods for psychology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Longitudinal item response modeling and posterior predictive checking in {R} and {Stan}\",\"authors\":\"A. Scharl, Timo Gnambs\",\"doi\":\"10.20982/tqmp.15.2.p075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"aLeibniz Institute for Educational Trajectories bJohannes Kepler University Linz Abstract Item response theory is widely used in a variety of research fields. Among others, it is the de facto standard for test development and calibration in educational large-scale assessments. In this context, longitudinal modeling is of great importance to examine developmental trajectories in competences and identify predictors of academic success. Therefore, this paper describes various multidimensional item response models that can be used in a longitudinal setting and how to estimate change in a Bayesian framework using the statistical software Stan. Moreover, model evaluation techniques such as the widely applicable information criterion and posterior predictive checking with several discrepancy measures suited for Bayesian item response modeling are presented. Finally, an empirical application is described that examines change in mathematical competence between grades 5 and 7 forN = 1, 371 German students using a Bayesian longitudinal item response model.\",\"PeriodicalId\":93055,\"journal\":{\"name\":\"The quantitative methods for psychology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The quantitative methods for psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20982/tqmp.15.2.p075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quantitative methods for psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20982/tqmp.15.2.p075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

aLeibniz教育轨迹研究所bJohannes Kepler大学林茨抽象项目反应理论广泛应用于各种研究领域。除其他外,它是教育大规模评估中测试开发和校准的事实标准。在这种情况下,纵向建模对于检验能力的发展轨迹和确定学业成功的预测因素非常重要。因此,本文描述了可以在纵向环境中使用的各种多维项目反应模型,以及如何使用统计软件Stan在贝叶斯框架中估计变化。此外,还提出了适用于贝叶斯项目反应建模的模型评估技术,如广泛应用的信息准则和具有几种差异度量的后验预测检验。最后,描述了一个实证应用,该应用使用贝叶斯纵向项目反应模型来检验N=1371名德国学生在5年级和7年级之间数学能力的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Longitudinal item response modeling and posterior predictive checking in {R} and {Stan}
aLeibniz Institute for Educational Trajectories bJohannes Kepler University Linz Abstract Item response theory is widely used in a variety of research fields. Among others, it is the de facto standard for test development and calibration in educational large-scale assessments. In this context, longitudinal modeling is of great importance to examine developmental trajectories in competences and identify predictors of academic success. Therefore, this paper describes various multidimensional item response models that can be used in a longitudinal setting and how to estimate change in a Bayesian framework using the statistical software Stan. Moreover, model evaluation techniques such as the widely applicable information criterion and posterior predictive checking with several discrepancy measures suited for Bayesian item response modeling are presented. Finally, an empirical application is described that examines change in mathematical competence between grades 5 and 7 forN = 1, 371 German students using a Bayesian longitudinal item response model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信