雷诺数和Weissenberg数对粘性流体线性管流稳定性的影响

Ibrahim Kama, M. Sow, K. Kpode, C. Mbow
{"title":"雷诺数和Weissenberg数对粘性流体线性管流稳定性的影响","authors":"Ibrahim Kama, M. Sow, K. Kpode, C. Mbow","doi":"10.4236/MME.2018.84018","DOIUrl":null,"url":null,"abstract":"A Fourier-Chebyshev Petrov-Galerkin spectral method is described for high accuracy computation of linearized dynamics for flow in a circular pipe. The code used here is based on solenoidal velocity variables and is written in FORTRAN. Systematic studies are presented of the dependence of eigenval-ues and other quantities on the axial and azimuthal wave numbers; the Reyn-olds’ number of up to 107 and the Weissenberg’s number that is considered lower here. The flow will be considered stable if all the real parts of the ei-genvalues obtained are negative and unstable if only one of these values is positive.","PeriodicalId":69007,"journal":{"name":"现代机械工程(英文)","volume":"08 1","pages":"264-277"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of the Reynolds and Weissenberg’s Numbers on the Stability of Linear Pipe Flow of Viscous Fluid\",\"authors\":\"Ibrahim Kama, M. Sow, K. Kpode, C. Mbow\",\"doi\":\"10.4236/MME.2018.84018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Fourier-Chebyshev Petrov-Galerkin spectral method is described for high accuracy computation of linearized dynamics for flow in a circular pipe. The code used here is based on solenoidal velocity variables and is written in FORTRAN. Systematic studies are presented of the dependence of eigenval-ues and other quantities on the axial and azimuthal wave numbers; the Reyn-olds’ number of up to 107 and the Weissenberg’s number that is considered lower here. The flow will be considered stable if all the real parts of the ei-genvalues obtained are negative and unstable if only one of these values is positive.\",\"PeriodicalId\":69007,\"journal\":{\"name\":\"现代机械工程(英文)\",\"volume\":\"08 1\",\"pages\":\"264-277\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代机械工程(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/MME.2018.84018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代机械工程(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/MME.2018.84018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了圆管内流动线性化动力学的傅立叶-切比雪夫-彼得罗夫-伽辽金谱方法。这里使用的代码基于螺线管速度变量,并用FORTRAN编写。系统地研究了本征值和其他量对轴向波数和方位波数的依赖性;Reyn-olds的数字高达107,而Weissenberg的数字在这里被认为更低。如果获得的ei genvalue的所有实部都是负的,则流将被认为是稳定的,如果这些值中只有一个是正的,则认为流是不稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of the Reynolds and Weissenberg’s Numbers on the Stability of Linear Pipe Flow of Viscous Fluid
A Fourier-Chebyshev Petrov-Galerkin spectral method is described for high accuracy computation of linearized dynamics for flow in a circular pipe. The code used here is based on solenoidal velocity variables and is written in FORTRAN. Systematic studies are presented of the dependence of eigenval-ues and other quantities on the axial and azimuthal wave numbers; the Reyn-olds’ number of up to 107 and the Weissenberg’s number that is considered lower here. The flow will be considered stable if all the real parts of the ei-genvalues obtained are negative and unstable if only one of these values is positive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
115
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信