采用自定心墩的铁路桥梁隔震

IF 2.1 3区 工程技术 Q2 ENGINEERING, CIVIL
X. Xia, Xiyin Zhang, Jun‐Yang Shi, Jin-long Tang
{"title":"采用自定心墩的铁路桥梁隔震","authors":"X. Xia, Xiyin Zhang, Jun‐Yang Shi, Jin-long Tang","doi":"10.12989/SSS.2021.27.3.447","DOIUrl":null,"url":null,"abstract":"Earthquakes cause severe damages to bridge structures, and rocking isolation of piers has become a superior option for the seismic protection of bridges during earthquakes. A seismic isolation method with free rocking mode is proposed for railway bridge piers with medium height. Experimental and numerical analysis are conducted to evaluate the seismic performance of the rocking-isolated bridge pier. Shaking table test is carried out with a scaled model by using three strong input earthquake records. The measured data includes displacement, acceleration and time history response of the pier-top and the bending moment of the pier-bottom. Test results show that the expected uplift and rocking of the isolated pier occur under strong earthquakes and the rocking-isolated pier has self-centering capacity. Slight damage appears at the collision surface between pier and base due to pier uplift, while there is no damage in the pier body. The bending moment of pier-bottom is less affected by the spectrum of input ground motions. The two-spring model is provided to simulate the isolated pier with free rocking mode under earthquakes. A seismic response analysis model for the rocking-ioslated pier is established with the assistance of OpenSees platform. The simulated results agree well with the measured results by shaking table test. Therefore, the seismic isolation method with a self-centering pier is worthy of promotion for railway bridges in high seismic risk regions.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":"27 1","pages":"447"},"PeriodicalIF":2.1000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Seismic isolation of railway bridges using a self-centering pier\",\"authors\":\"X. Xia, Xiyin Zhang, Jun‐Yang Shi, Jin-long Tang\",\"doi\":\"10.12989/SSS.2021.27.3.447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earthquakes cause severe damages to bridge structures, and rocking isolation of piers has become a superior option for the seismic protection of bridges during earthquakes. A seismic isolation method with free rocking mode is proposed for railway bridge piers with medium height. Experimental and numerical analysis are conducted to evaluate the seismic performance of the rocking-isolated bridge pier. Shaking table test is carried out with a scaled model by using three strong input earthquake records. The measured data includes displacement, acceleration and time history response of the pier-top and the bending moment of the pier-bottom. Test results show that the expected uplift and rocking of the isolated pier occur under strong earthquakes and the rocking-isolated pier has self-centering capacity. Slight damage appears at the collision surface between pier and base due to pier uplift, while there is no damage in the pier body. The bending moment of pier-bottom is less affected by the spectrum of input ground motions. The two-spring model is provided to simulate the isolated pier with free rocking mode under earthquakes. A seismic response analysis model for the rocking-ioslated pier is established with the assistance of OpenSees platform. The simulated results agree well with the measured results by shaking table test. Therefore, the seismic isolation method with a self-centering pier is worthy of promotion for railway bridges in high seismic risk regions.\",\"PeriodicalId\":51155,\"journal\":{\"name\":\"Smart Structures and Systems\",\"volume\":\"27 1\",\"pages\":\"447\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Structures and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SSS.2021.27.3.447\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.27.3.447","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 10

摘要

地震对桥梁结构造成严重破坏,桥墩的摇摆隔震已成为桥梁在地震中抗震保护的一种优越选择。针对中高铁路桥墩,提出了一种自由摇摆隔震方法。通过试验和数值分析,对摇摆隔震桥墩的抗震性能进行了评价。利用三个强输入地震记录,用比例模型进行了振动台试验。测量数据包括墩顶位移、加速度和时程响应以及墩底弯矩。试验结果表明,在强烈地震作用下,隔震墩出现了预期的扬摇,且摇隔震墩具有自定心能力。桥墩与底座碰撞面因桥墩隆起而出现轻微损伤,墩身无损伤。墩底弯矩受输入地震动谱的影响较小。采用双弹簧模型对隔震墩在地震作用下的自由摇摆模态进行了模拟。在OpenSees平台的辅助下,建立了摆动相关桥墩的地震反应分析模型。模拟结果与振动台试验的实测结果吻合较好。因此,在高地震危险区的铁路桥梁中,采用自定心墩隔震方法是值得推广的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seismic isolation of railway bridges using a self-centering pier
Earthquakes cause severe damages to bridge structures, and rocking isolation of piers has become a superior option for the seismic protection of bridges during earthquakes. A seismic isolation method with free rocking mode is proposed for railway bridge piers with medium height. Experimental and numerical analysis are conducted to evaluate the seismic performance of the rocking-isolated bridge pier. Shaking table test is carried out with a scaled model by using three strong input earthquake records. The measured data includes displacement, acceleration and time history response of the pier-top and the bending moment of the pier-bottom. Test results show that the expected uplift and rocking of the isolated pier occur under strong earthquakes and the rocking-isolated pier has self-centering capacity. Slight damage appears at the collision surface between pier and base due to pier uplift, while there is no damage in the pier body. The bending moment of pier-bottom is less affected by the spectrum of input ground motions. The two-spring model is provided to simulate the isolated pier with free rocking mode under earthquakes. A seismic response analysis model for the rocking-ioslated pier is established with the assistance of OpenSees platform. The simulated results agree well with the measured results by shaking table test. Therefore, the seismic isolation method with a self-centering pier is worthy of promotion for railway bridges in high seismic risk regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Structures and Systems
Smart Structures and Systems 工程技术-工程:机械
CiteScore
6.50
自引率
8.60%
发文量
0
审稿时长
9 months
期刊介绍: An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include: Sensors/Actuators(Materials/devices/ informatics/networking) Structural Health Monitoring and Control Diagnosis/Prognosis Life Cycle Engineering(planning/design/ maintenance/renewal) and related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信