算子矩阵下降谱的极限点

Q3 Mathematics
H. Boua, M. Karmouni, A. Tajmouati
{"title":"算子矩阵下降谱的极限点","authors":"H. Boua, M. Karmouni, A. Tajmouati","doi":"10.2478/mjpaa-2022-0024","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate the limit points set of descent spectrum of upper triangular operator matrices MC=(AC0B) {M_C} = \\left( {\\matrix{A \\hfill & C \\hfill \\cr 0 \\hfill & B \\hfill \\cr } } \\right) . We prove that acc(σdes(MC)) ∪ Waccσdes = acc(σdes(A)) ∪ acc(σdes(B)) where Waccσdes is the union of certain holes in acc(σdes(MC)), which happen to be subsets of acc(σasc(B)) ∩ acc(σdes(A)). Furthermore, several sufficient conditions for acc(σdes(MC)) = acc(σdes(A)) ∪ acc(σdes(B)) holds for every C ∈ ℬ(Y, X) are given.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"358 - 363"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit points for descent spectrum of operator matrices\",\"authors\":\"H. Boua, M. Karmouni, A. Tajmouati\",\"doi\":\"10.2478/mjpaa-2022-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we investigate the limit points set of descent spectrum of upper triangular operator matrices MC=(AC0B) {M_C} = \\\\left( {\\\\matrix{A \\\\hfill & C \\\\hfill \\\\cr 0 \\\\hfill & B \\\\hfill \\\\cr } } \\\\right) . We prove that acc(σdes(MC)) ∪ Waccσdes = acc(σdes(A)) ∪ acc(σdes(B)) where Waccσdes is the union of certain holes in acc(σdes(MC)), which happen to be subsets of acc(σasc(B)) ∩ acc(σdes(A)). Furthermore, several sufficient conditions for acc(σdes(MC)) = acc(σdes(A)) ∪ acc(σdes(B)) holds for every C ∈ ℬ(Y, X) are given.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"8 1\",\"pages\":\"358 - 363\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2022-0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了上三角算子矩阵MC=(AC0B){M_C}=\left(矩阵{A\hfill&C\hfill\cr0\hfill&B\hfill\cr}\right)的下降谱的极限点集。我们证明了acc(σdes(MC))ŞWaccσdes=acc。此外,acc(σdes(MC))=accℬ(Y、X)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit points for descent spectrum of operator matrices
Abstract In this paper, we investigate the limit points set of descent spectrum of upper triangular operator matrices MC=(AC0B) {M_C} = \left( {\matrix{A \hfill & C \hfill \cr 0 \hfill & B \hfill \cr } } \right) . We prove that acc(σdes(MC)) ∪ Waccσdes = acc(σdes(A)) ∪ acc(σdes(B)) where Waccσdes is the union of certain holes in acc(σdes(MC)), which happen to be subsets of acc(σasc(B)) ∩ acc(σdes(A)). Furthermore, several sufficient conditions for acc(σdes(MC)) = acc(σdes(A)) ∪ acc(σdes(B)) holds for every C ∈ ℬ(Y, X) are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信