{"title":"算子矩阵下降谱的极限点","authors":"H. Boua, M. Karmouni, A. Tajmouati","doi":"10.2478/mjpaa-2022-0024","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate the limit points set of descent spectrum of upper triangular operator matrices MC=(AC0B) {M_C} = \\left( {\\matrix{A \\hfill & C \\hfill \\cr 0 \\hfill & B \\hfill \\cr } } \\right) . We prove that acc(σdes(MC)) ∪ Waccσdes = acc(σdes(A)) ∪ acc(σdes(B)) where Waccσdes is the union of certain holes in acc(σdes(MC)), which happen to be subsets of acc(σasc(B)) ∩ acc(σdes(A)). Furthermore, several sufficient conditions for acc(σdes(MC)) = acc(σdes(A)) ∪ acc(σdes(B)) holds for every C ∈ ℬ(Y, X) are given.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"358 - 363"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit points for descent spectrum of operator matrices\",\"authors\":\"H. Boua, M. Karmouni, A. Tajmouati\",\"doi\":\"10.2478/mjpaa-2022-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we investigate the limit points set of descent spectrum of upper triangular operator matrices MC=(AC0B) {M_C} = \\\\left( {\\\\matrix{A \\\\hfill & C \\\\hfill \\\\cr 0 \\\\hfill & B \\\\hfill \\\\cr } } \\\\right) . We prove that acc(σdes(MC)) ∪ Waccσdes = acc(σdes(A)) ∪ acc(σdes(B)) where Waccσdes is the union of certain holes in acc(σdes(MC)), which happen to be subsets of acc(σasc(B)) ∩ acc(σdes(A)). Furthermore, several sufficient conditions for acc(σdes(MC)) = acc(σdes(A)) ∪ acc(σdes(B)) holds for every C ∈ ℬ(Y, X) are given.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"8 1\",\"pages\":\"358 - 363\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2022-0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Limit points for descent spectrum of operator matrices
Abstract In this paper, we investigate the limit points set of descent spectrum of upper triangular operator matrices MC=(AC0B) {M_C} = \left( {\matrix{A \hfill & C \hfill \cr 0 \hfill & B \hfill \cr } } \right) . We prove that acc(σdes(MC)) ∪ Waccσdes = acc(σdes(A)) ∪ acc(σdes(B)) where Waccσdes is the union of certain holes in acc(σdes(MC)), which happen to be subsets of acc(σasc(B)) ∩ acc(σdes(A)). Furthermore, several sufficient conditions for acc(σdes(MC)) = acc(σdes(A)) ∪ acc(σdes(B)) holds for every C ∈ ℬ(Y, X) are given.