求解逆热传导问题的一种新的混合方法

Q3 Engineering
M. Shahnazari, F. Shali, A. Saberi, M. Moosavi
{"title":"求解逆热传导问题的一种新的混合方法","authors":"M. Shahnazari, F. Shali, A. Saberi, M. Moosavi","doi":"10.46300/9104.2021.15.17","DOIUrl":null,"url":null,"abstract":"Solving the inverse problems, especially in the field of heat transfer, is one of the challenges of engineering due to its importance in industrial applications. It is well-known that inverse heat conduction problems (IHCPs) are severely ill-posed, which means that small disturbances in the input may cause extremely large errors in the solution. This paper introduces an accurate method for solving inverse problems by combining Tikhonov's regularization and the genetic algorithm. Finding the regularization parameter as the decisive parameter is modelled by this method, a few sample problems were solved to investigate the efficiency and accuracy of the proposed method. A linear sum of fundamental solutions with unknown constant coefficients assumed as an approximated solution to the sample IHCP problem and collocation method is used to minimize residues in the collocation points. In this contribution, we use Morozov's discrepancy principle and Quasi-Optimality criterion for defining the objective function, which must be minimized to yield the value of the optimum regularization parameter.","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Hybrid Method for Solving Inverse Heat Conduction Problems\",\"authors\":\"M. Shahnazari, F. Shali, A. Saberi, M. Moosavi\",\"doi\":\"10.46300/9104.2021.15.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving the inverse problems, especially in the field of heat transfer, is one of the challenges of engineering due to its importance in industrial applications. It is well-known that inverse heat conduction problems (IHCPs) are severely ill-posed, which means that small disturbances in the input may cause extremely large errors in the solution. This paper introduces an accurate method for solving inverse problems by combining Tikhonov's regularization and the genetic algorithm. Finding the regularization parameter as the decisive parameter is modelled by this method, a few sample problems were solved to investigate the efficiency and accuracy of the proposed method. A linear sum of fundamental solutions with unknown constant coefficients assumed as an approximated solution to the sample IHCP problem and collocation method is used to minimize residues in the collocation points. In this contribution, we use Morozov's discrepancy principle and Quasi-Optimality criterion for defining the objective function, which must be minimized to yield the value of the optimum regularization parameter.\",\"PeriodicalId\":39203,\"journal\":{\"name\":\"International Journal of Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/9104.2021.15.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9104.2021.15.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

求解逆问题,特别是在传热领域,由于其在工业应用中的重要性而成为工程学的挑战之一。众所周知,反热传导问题(IHCPs)是严重不适定的,这意味着输入中的小扰动可能会导致解的极大误差。本文介绍了一种结合吉洪诺夫正则化和遗传算法求解逆问题的精确方法。该方法以正则化参数为决定参数进行建模,并通过实例验证了该方法的有效性和准确性。采用带未知常系数的基本解线性和作为样本IHCP问题的近似解,并采用配点法最小化配点处的残数。在这篇贡献中,我们使用Morozov的差异原理和拟最优性准则来定义目标函数,目标函数必须最小化以产生最优正则化参数的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Hybrid Method for Solving Inverse Heat Conduction Problems
Solving the inverse problems, especially in the field of heat transfer, is one of the challenges of engineering due to its importance in industrial applications. It is well-known that inverse heat conduction problems (IHCPs) are severely ill-posed, which means that small disturbances in the input may cause extremely large errors in the solution. This paper introduces an accurate method for solving inverse problems by combining Tikhonov's regularization and the genetic algorithm. Finding the regularization parameter as the decisive parameter is modelled by this method, a few sample problems were solved to investigate the efficiency and accuracy of the proposed method. A linear sum of fundamental solutions with unknown constant coefficients assumed as an approximated solution to the sample IHCP problem and collocation method is used to minimize residues in the collocation points. In this contribution, we use Morozov's discrepancy principle and Quasi-Optimality criterion for defining the objective function, which must be minimized to yield the value of the optimum regularization parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanics
International Journal of Mechanics Engineering-Computational Mechanics
CiteScore
1.60
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信