{"title":"有限域上向量空间大构型的同余类","authors":"Alex McDonald","doi":"10.7169/facm/1814","DOIUrl":null,"url":null,"abstract":"Bennett, Hart, Iosevich, Pakianathan, and Rudnev found an exponent $s d$ case, fixing all pairs of distnaces leads to an overdetermined system, so $q^{\\binom{k+1}{2}}$ is no longer the correct number of congruence classes. We determine the correct number, and prove that $|E|\\gtrsim q^s$ still determines a positive proportion of all congruence classes, for the same $s$ as in the $k\\leq d$ case.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Congruence classes of large configurations in vector spaces over finite fields\",\"authors\":\"Alex McDonald\",\"doi\":\"10.7169/facm/1814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bennett, Hart, Iosevich, Pakianathan, and Rudnev found an exponent $s d$ case, fixing all pairs of distnaces leads to an overdetermined system, so $q^{\\\\binom{k+1}{2}}$ is no longer the correct number of congruence classes. We determine the correct number, and prove that $|E|\\\\gtrsim q^s$ still determines a positive proportion of all congruence classes, for the same $s$ as in the $k\\\\leq d$ case.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Congruence classes of large configurations in vector spaces over finite fields
Bennett, Hart, Iosevich, Pakianathan, and Rudnev found an exponent $s d$ case, fixing all pairs of distnaces leads to an overdetermined system, so $q^{\binom{k+1}{2}}$ is no longer the correct number of congruence classes. We determine the correct number, and prove that $|E|\gtrsim q^s$ still determines a positive proportion of all congruence classes, for the same $s$ as in the $k\leq d$ case.