Fatemeh Sabbaqzade, M. Keramati, Hossein Moradi Moghaddam, Pouria Hamidian
{"title":"用天然纤维处理的水泥稳定湿陷性土壤的力学性能评价","authors":"Fatemeh Sabbaqzade, M. Keramati, Hossein Moradi Moghaddam, Pouria Hamidian","doi":"10.1080/17486025.2021.1974579","DOIUrl":null,"url":null,"abstract":"ABSTRACT Studying the effect of different percentages of mixing rice straw fibres (RSF) on the compressive strength (CS) of collapsible soils stabilised with different amounts of cement through performing unconfined compressive strength (UCS) test and standard compaction test (SCT) form the basis of laboratory research in this project. The purpose of the use of natural fibres in this study is to achieve sustainability objectives in geotechnical engineering. The variable parameters of the study include the fibre content (0%, 0.25%, 0.5% and 1%), the cement content (0%, 4%, 8% and 12%), and the curing time (0, 7, and 28 days). In the sample containing only 1% of fibres, increasing the amount of cement from 0% to 12% improved the compressive strength by 172.38% and decreased the failure strain (FS) by 68.10%. The response surface methodology (RSM) was also conducted in the present study to identify the influence rules of cement content, curing time, fibre content, and their interactions on CS and FS. RSM is considered a confident method, since in both models, the P-Values are less than 0.0001, and the R2 index for CS and FS equals 0.9893 and 0.9776, respectively.","PeriodicalId":46470,"journal":{"name":"Geomechanics and Geoengineering-An International Journal","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluation of the mechanical behaviour of cement - stabilised collapsible soils treated with natural fibres\",\"authors\":\"Fatemeh Sabbaqzade, M. Keramati, Hossein Moradi Moghaddam, Pouria Hamidian\",\"doi\":\"10.1080/17486025.2021.1974579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Studying the effect of different percentages of mixing rice straw fibres (RSF) on the compressive strength (CS) of collapsible soils stabilised with different amounts of cement through performing unconfined compressive strength (UCS) test and standard compaction test (SCT) form the basis of laboratory research in this project. The purpose of the use of natural fibres in this study is to achieve sustainability objectives in geotechnical engineering. The variable parameters of the study include the fibre content (0%, 0.25%, 0.5% and 1%), the cement content (0%, 4%, 8% and 12%), and the curing time (0, 7, and 28 days). In the sample containing only 1% of fibres, increasing the amount of cement from 0% to 12% improved the compressive strength by 172.38% and decreased the failure strain (FS) by 68.10%. The response surface methodology (RSM) was also conducted in the present study to identify the influence rules of cement content, curing time, fibre content, and their interactions on CS and FS. RSM is considered a confident method, since in both models, the P-Values are less than 0.0001, and the R2 index for CS and FS equals 0.9893 and 0.9776, respectively.\",\"PeriodicalId\":46470,\"journal\":{\"name\":\"Geomechanics and Geoengineering-An International Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Geoengineering-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17486025.2021.1974579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geoengineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17486025.2021.1974579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Evaluation of the mechanical behaviour of cement - stabilised collapsible soils treated with natural fibres
ABSTRACT Studying the effect of different percentages of mixing rice straw fibres (RSF) on the compressive strength (CS) of collapsible soils stabilised with different amounts of cement through performing unconfined compressive strength (UCS) test and standard compaction test (SCT) form the basis of laboratory research in this project. The purpose of the use of natural fibres in this study is to achieve sustainability objectives in geotechnical engineering. The variable parameters of the study include the fibre content (0%, 0.25%, 0.5% and 1%), the cement content (0%, 4%, 8% and 12%), and the curing time (0, 7, and 28 days). In the sample containing only 1% of fibres, increasing the amount of cement from 0% to 12% improved the compressive strength by 172.38% and decreased the failure strain (FS) by 68.10%. The response surface methodology (RSM) was also conducted in the present study to identify the influence rules of cement content, curing time, fibre content, and their interactions on CS and FS. RSM is considered a confident method, since in both models, the P-Values are less than 0.0001, and the R2 index for CS and FS equals 0.9893 and 0.9776, respectively.
期刊介绍:
Geomechanics is concerned with the application of the principle of mechanics to earth-materials (namely geo-material). Geoengineering covers a wide range of engineering disciplines related to geo-materials, such as foundation engineering, slope engineering, tunnelling, rock engineering, engineering geology and geo-environmental engineering. Geomechanics and Geoengineering is a major publication channel for research in the areas of soil and rock mechanics, geotechnical and geological engineering, engineering geology, geo-environmental engineering and all geo-material related engineering and science disciplines. The Journal provides an international forum for the exchange of innovative ideas, especially between researchers in Asia and the rest of the world.