Le Thi Phuong Ngoc, Nguyen Anh Triet, Phan Thi My Duyen, Nguyen Thanh Long
{"title":"一类具有粘弹性项的kirchhoff -载波型伪抛物非线性方程的Robin-Dirichlet问题的一般衰减和爆破结果","authors":"Le Thi Phuong Ngoc, Nguyen Anh Triet, Phan Thi My Duyen, Nguyen Thanh Long","doi":"10.1007/s40306-023-00496-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the Robin-Dirichlet problem for a nonlinear pseudoparabolic equation of Kirchhoff-Carrier type with viscoelastic term. Under suitable assumptions on the initial data and the relaxation function included in the viscoelastic term, we obtain sufficient conditions for the existence, uniqueness, blow-up, and decay of a weak solution. The results obtained here extend the ones in a previous paper of the authors (Ngoc et al., <i>Math. Meth. Appl. Sci.</i> <b>44</b>(11), 8697–8725, 26).</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"48 1","pages":"151 - 191"},"PeriodicalIF":0.3000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General Decay and Blow-up Results of a Robin-Dirichlet Problem for a Pseudoparabolic Nonlinear Equation of Kirchhoff-Carrier Type with Viscoelastic Term\",\"authors\":\"Le Thi Phuong Ngoc, Nguyen Anh Triet, Phan Thi My Duyen, Nguyen Thanh Long\",\"doi\":\"10.1007/s40306-023-00496-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the Robin-Dirichlet problem for a nonlinear pseudoparabolic equation of Kirchhoff-Carrier type with viscoelastic term. Under suitable assumptions on the initial data and the relaxation function included in the viscoelastic term, we obtain sufficient conditions for the existence, uniqueness, blow-up, and decay of a weak solution. The results obtained here extend the ones in a previous paper of the authors (Ngoc et al., <i>Math. Meth. Appl. Sci.</i> <b>44</b>(11), 8697–8725, 26).</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"48 1\",\"pages\":\"151 - 191\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-023-00496-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-023-00496-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
General Decay and Blow-up Results of a Robin-Dirichlet Problem for a Pseudoparabolic Nonlinear Equation of Kirchhoff-Carrier Type with Viscoelastic Term
In this paper, we investigate the Robin-Dirichlet problem for a nonlinear pseudoparabolic equation of Kirchhoff-Carrier type with viscoelastic term. Under suitable assumptions on the initial data and the relaxation function included in the viscoelastic term, we obtain sufficient conditions for the existence, uniqueness, blow-up, and decay of a weak solution. The results obtained here extend the ones in a previous paper of the authors (Ngoc et al., Math. Meth. Appl. Sci.44(11), 8697–8725, 26).
期刊介绍:
Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.