核聚变反应堆标准和临界运行下铍的稳定性分析

Q4 Physics and Astronomy
K. Bekbayev, M. Akim, Zh. Nabiyeva
{"title":"核聚变反应堆标准和临界运行下铍的稳定性分析","authors":"K. Bekbayev, M. Akim, Zh. Nabiyeva","doi":"10.32523/ejpfm.2021050408","DOIUrl":null,"url":null,"abstract":"Currently, dark fermentation is the most practically applicable for the implementation of biotechnological  roduction of hydrogen. However, this process has certain limiting factors, since a significant part of the substrates are converted into various metabolic products, but not into H2 . Therefore, it is necessary to develop optimal conditions for energy recovery in the form of gaseous molecular hydrogen. Various carbohydrate-containing raw materials for hydrogen production often require pretreatment before they can be used by microorganisms. Dilute acid pretreatment represents a promising way to increase biohydrogen production. However, during acid hydrolysis of carbohydrate-containing wastes, in addition to the released soluble sugars, inhibitors of enzymatic processing, such as furfural and 5-HMF, acetic and propionic acids, etc., can accumulate. In this regard, it is necessary to select the optimal conditions for the efficient production of biohydrogen. This study investigated the production of biohydrogen during the microbial fermentation of sugars in a dilute solution of a molasses-based acid hydrolyzate using Escherichia coli and a multiple mutant. The results of the experiments showed that molasses is a valuable product as a source of carbon and energy for microorganisms in the production of biohydrogen, as well as for the production of biomass for the further production of various products with high added value.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the beryllium stability under standard and critical operation in a fusion reactor\",\"authors\":\"K. Bekbayev, M. Akim, Zh. Nabiyeva\",\"doi\":\"10.32523/ejpfm.2021050408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, dark fermentation is the most practically applicable for the implementation of biotechnological  roduction of hydrogen. However, this process has certain limiting factors, since a significant part of the substrates are converted into various metabolic products, but not into H2 . Therefore, it is necessary to develop optimal conditions for energy recovery in the form of gaseous molecular hydrogen. Various carbohydrate-containing raw materials for hydrogen production often require pretreatment before they can be used by microorganisms. Dilute acid pretreatment represents a promising way to increase biohydrogen production. However, during acid hydrolysis of carbohydrate-containing wastes, in addition to the released soluble sugars, inhibitors of enzymatic processing, such as furfural and 5-HMF, acetic and propionic acids, etc., can accumulate. In this regard, it is necessary to select the optimal conditions for the efficient production of biohydrogen. This study investigated the production of biohydrogen during the microbial fermentation of sugars in a dilute solution of a molasses-based acid hydrolyzate using Escherichia coli and a multiple mutant. The results of the experiments showed that molasses is a valuable product as a source of carbon and energy for microorganisms in the production of biohydrogen, as well as for the production of biomass for the further production of various products with high added value.\",\"PeriodicalId\":36047,\"journal\":{\"name\":\"Eurasian Journal of Physics and Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Journal of Physics and Functional Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/ejpfm.2021050408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Journal of Physics and Functional Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/ejpfm.2021050408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

目前,黑暗发酵是最实际适用于生物技术生产氢气的方法。然而,这个过程有某些限制因素,因为很大一部分底物被转化为各种代谢产物,但没有转化为H2。因此,有必要开发以气态分子氢形式回收能量的最佳条件。用于制氢的各种含碳水化合物的原料在被微生物使用之前通常需要预处理。稀酸预处理是提高生物氢气产量的一种很有前途的方法。然而,在含碳水化合物废物的酸水解过程中,除了释放的可溶性糖外,酶促加工的抑制剂,如糠醛和5-HMF、乙酸和丙酸等,也会积累。在这方面,有必要选择有效生产生物氢的最佳条件。本研究使用大肠杆菌和多个突变体,研究了糖蜜酸水解液稀溶液中糖的微生物发酵过程中生物氢的产生。实验结果表明,糖蜜是一种有价值的产品,可以作为微生物生产生物氢的碳和能量来源,也可以用于生产生物质,进一步生产各种高附加值产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the beryllium stability under standard and critical operation in a fusion reactor
Currently, dark fermentation is the most practically applicable for the implementation of biotechnological  roduction of hydrogen. However, this process has certain limiting factors, since a significant part of the substrates are converted into various metabolic products, but not into H2 . Therefore, it is necessary to develop optimal conditions for energy recovery in the form of gaseous molecular hydrogen. Various carbohydrate-containing raw materials for hydrogen production often require pretreatment before they can be used by microorganisms. Dilute acid pretreatment represents a promising way to increase biohydrogen production. However, during acid hydrolysis of carbohydrate-containing wastes, in addition to the released soluble sugars, inhibitors of enzymatic processing, such as furfural and 5-HMF, acetic and propionic acids, etc., can accumulate. In this regard, it is necessary to select the optimal conditions for the efficient production of biohydrogen. This study investigated the production of biohydrogen during the microbial fermentation of sugars in a dilute solution of a molasses-based acid hydrolyzate using Escherichia coli and a multiple mutant. The results of the experiments showed that molasses is a valuable product as a source of carbon and energy for microorganisms in the production of biohydrogen, as well as for the production of biomass for the further production of various products with high added value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eurasian Journal of Physics and Functional Materials
Eurasian Journal of Physics and Functional Materials Materials Science-Materials Science (miscellaneous)
CiteScore
1.10
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信