具有积分傅立叶系数的下深度极值拟模形式

Pub Date : 2021-01-25 DOI:10.2206/kyushujm.75.351
Tsudoi Kaminaka, Fumiharu Kato
{"title":"具有积分傅立叶系数的下深度极值拟模形式","authors":"Tsudoi Kaminaka, Fumiharu Kato","doi":"10.2206/kyushujm.75.351","DOIUrl":null,"url":null,"abstract":"We show that, based on Grabner’s recent results on modular differential equations satisfied by quasimodular forms, there exist only finitely many normalized extremal quasimodular forms of depth r that have all Fourier coefficients integral for each of r = 1, 2, 3, 4, and partly classifies them, where the classification is complete for r = 2, 3, 4; in fact, we show that there exists no normalized extremal quasimodular forms of depth 4 with all Fourier coefficients integral. Our result disproves a conjecture by Pellarin.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EXTREMAL QUASIMODULAR FORMS OF LOWER DEPTH WITH INTEGRAL FOURIER COEFFICIENTS\",\"authors\":\"Tsudoi Kaminaka, Fumiharu Kato\",\"doi\":\"10.2206/kyushujm.75.351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that, based on Grabner’s recent results on modular differential equations satisfied by quasimodular forms, there exist only finitely many normalized extremal quasimodular forms of depth r that have all Fourier coefficients integral for each of r = 1, 2, 3, 4, and partly classifies them, where the classification is complete for r = 2, 3, 4; in fact, we show that there exists no normalized extremal quasimodular forms of depth 4 with all Fourier coefficients integral. Our result disproves a conjecture by Pellarin.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.75.351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.75.351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于Grabner关于准模形式满足的模微分方程的最新结果,我们证明了深度r的归一化极值拟模形式只存在有限多个,它们对r = 1,2,3,4的傅里叶系数都是积分的,并对它们进行了部分分类,其中对r = 2,3,4的分类是完全的;事实上,我们证明了深度4的归一化极值拟模形式不存在,且所有的傅里叶系数都是积分的。我们的结果反驳了佩拉林的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
EXTREMAL QUASIMODULAR FORMS OF LOWER DEPTH WITH INTEGRAL FOURIER COEFFICIENTS
We show that, based on Grabner’s recent results on modular differential equations satisfied by quasimodular forms, there exist only finitely many normalized extremal quasimodular forms of depth r that have all Fourier coefficients integral for each of r = 1, 2, 3, 4, and partly classifies them, where the classification is complete for r = 2, 3, 4; in fact, we show that there exists no normalized extremal quasimodular forms of depth 4 with all Fourier coefficients integral. Our result disproves a conjecture by Pellarin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信