{"title":"超正则代数和mock theta函数的表示","authors":"V. Kac, M. Wakimoto","doi":"10.1090/MOSC/268","DOIUrl":null,"url":null,"abstract":"It is well known that the normaized characters of integrable highest weight modules of given level over an affine Lie algebra $\\hat{\\frak{g}}$ span an $SL_2(\\mathbf{Z})$-invariant space. This result extends to admissible $\\hat{\\frak{g}}$-modules, where $\\frak{g}$ is a simple Lie algebra or $osp_{1|n}$. Applying the quantum Hamiltonian reduction (QHR) to admissible $\\hat{\\frak{g}}$-modules when $\\frak{g} =sl_2$ (resp. $=osp_{1|2}$) one obtains minimal series modules over the Virasoro (resp. $N=1$ superconformal algebras), which form modular invariant families. \nAnother instance of modular invariance occurs for boundary level admissible modules, including when $\\frak{g}$ is a basic Lie superalgebra. For example, if $\\frak{g}=sl_{2|1}$ (resp. $=osp_{3|2}$), we thus obtain modular invariant families of $\\hat{\\frak{g}}$-modules, whose QHR produces the minimal series modules for the $N=2$ superconformal algebras (resp. a modular invariant family of $N=3$ superconformal algebra modules). \nHowever, in the case when $\\frak{g}$ is a basic Lie superalgebra different from a simple Lie algebra or $osp_{1|n}$, modular invariance of normalized supercharacters of admissible $\\hat{\\frak{g}}$-modules holds outside of boundary levels only after their modification in the spirit of Zwegers' modification of mock theta functions. Applying the QHR, we obtain families of representations of $N=2,3,4$ and big $N=4$ superconformal algebras, whose modified (super)characters span an $SL_2(\\mathbf{Z})$-invariant space.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"78 1","pages":"9-74"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/MOSC/268","citationCount":"4","resultStr":"{\"title\":\"Representations of superconformal algebras and mock theta functions\",\"authors\":\"V. Kac, M. Wakimoto\",\"doi\":\"10.1090/MOSC/268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that the normaized characters of integrable highest weight modules of given level over an affine Lie algebra $\\\\hat{\\\\frak{g}}$ span an $SL_2(\\\\mathbf{Z})$-invariant space. This result extends to admissible $\\\\hat{\\\\frak{g}}$-modules, where $\\\\frak{g}$ is a simple Lie algebra or $osp_{1|n}$. Applying the quantum Hamiltonian reduction (QHR) to admissible $\\\\hat{\\\\frak{g}}$-modules when $\\\\frak{g} =sl_2$ (resp. $=osp_{1|2}$) one obtains minimal series modules over the Virasoro (resp. $N=1$ superconformal algebras), which form modular invariant families. \\nAnother instance of modular invariance occurs for boundary level admissible modules, including when $\\\\frak{g}$ is a basic Lie superalgebra. For example, if $\\\\frak{g}=sl_{2|1}$ (resp. $=osp_{3|2}$), we thus obtain modular invariant families of $\\\\hat{\\\\frak{g}}$-modules, whose QHR produces the minimal series modules for the $N=2$ superconformal algebras (resp. a modular invariant family of $N=3$ superconformal algebra modules). \\nHowever, in the case when $\\\\frak{g}$ is a basic Lie superalgebra different from a simple Lie algebra or $osp_{1|n}$, modular invariance of normalized supercharacters of admissible $\\\\hat{\\\\frak{g}}$-modules holds outside of boundary levels only after their modification in the spirit of Zwegers' modification of mock theta functions. Applying the QHR, we obtain families of representations of $N=2,3,4$ and big $N=4$ superconformal algebras, whose modified (super)characters span an $SL_2(\\\\mathbf{Z})$-invariant space.\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\"78 1\",\"pages\":\"9-74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/MOSC/268\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MOSC/268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MOSC/268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Representations of superconformal algebras and mock theta functions
It is well known that the normaized characters of integrable highest weight modules of given level over an affine Lie algebra $\hat{\frak{g}}$ span an $SL_2(\mathbf{Z})$-invariant space. This result extends to admissible $\hat{\frak{g}}$-modules, where $\frak{g}$ is a simple Lie algebra or $osp_{1|n}$. Applying the quantum Hamiltonian reduction (QHR) to admissible $\hat{\frak{g}}$-modules when $\frak{g} =sl_2$ (resp. $=osp_{1|2}$) one obtains minimal series modules over the Virasoro (resp. $N=1$ superconformal algebras), which form modular invariant families.
Another instance of modular invariance occurs for boundary level admissible modules, including when $\frak{g}$ is a basic Lie superalgebra. For example, if $\frak{g}=sl_{2|1}$ (resp. $=osp_{3|2}$), we thus obtain modular invariant families of $\hat{\frak{g}}$-modules, whose QHR produces the minimal series modules for the $N=2$ superconformal algebras (resp. a modular invariant family of $N=3$ superconformal algebra modules).
However, in the case when $\frak{g}$ is a basic Lie superalgebra different from a simple Lie algebra or $osp_{1|n}$, modular invariance of normalized supercharacters of admissible $\hat{\frak{g}}$-modules holds outside of boundary levels only after their modification in the spirit of Zwegers' modification of mock theta functions. Applying the QHR, we obtain families of representations of $N=2,3,4$ and big $N=4$ superconformal algebras, whose modified (super)characters span an $SL_2(\mathbf{Z})$-invariant space.