SL(2,R)作用上的射影环:上三角群下的测度不变

IF 1 4区 数学 Q1 MATHEMATICS
Asterisque Pub Date : 2017-09-08 DOI:10.24033/ast.1103
C. Bonatti, A. Eskin, A. Wilkinson
{"title":"SL(2,R)作用上的射影环:上三角群下的测度不变","authors":"C. Bonatti, A. Eskin, A. Wilkinson","doi":"10.24033/ast.1103","DOIUrl":null,"url":null,"abstract":"We consider the action of $SL(2,\\mathbb{R})$ on a vector bundle $\\mathbf{H}$ preserving an ergodic probability measure $\\nu$ on the base $X$. Under an irreducibility assumption on this action, we prove that if $\\hat\\nu$ is any lift of $\\nu$ to a probability measure on the projectivized bunde $\\mathbb{P}(\\mathbf{H})$ that is invariant under the upper triangular subgroup, then $\\hat \\nu$ is supported in the projectivization $\\mathbb{P}(\\mathbf{E}_1)$ of the top Lyapunov subspace of the positive diagonal semigroup. We derive two applications. First, the Lyapunov exponents for the Kontsevich-Zorich cocycle depend continuously on affine measures, answering a question in [MMY]. Second, if $\\mathbb{P}(\\mathbf{V})$ is an irreducible, flat projective bundle over a compact hyperbolic surface $\\Sigma$, with hyperbolic foliation $\\mathcal{F}$ tangent to the flat connection, then the foliated horocycle flow on $T^1\\mathcal{F}$ is uniquely ergodic if the top Lyapunov exponent of the foliated geodesic flow is simple. This generalizes results in [BG] to arbitrary dimension.","PeriodicalId":55445,"journal":{"name":"Asterisque","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2017-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Projective cocycles over SL(2,R) actions: measures invariant under the upper triangular group\",\"authors\":\"C. Bonatti, A. Eskin, A. Wilkinson\",\"doi\":\"10.24033/ast.1103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the action of $SL(2,\\\\mathbb{R})$ on a vector bundle $\\\\mathbf{H}$ preserving an ergodic probability measure $\\\\nu$ on the base $X$. Under an irreducibility assumption on this action, we prove that if $\\\\hat\\\\nu$ is any lift of $\\\\nu$ to a probability measure on the projectivized bunde $\\\\mathbb{P}(\\\\mathbf{H})$ that is invariant under the upper triangular subgroup, then $\\\\hat \\\\nu$ is supported in the projectivization $\\\\mathbb{P}(\\\\mathbf{E}_1)$ of the top Lyapunov subspace of the positive diagonal semigroup. We derive two applications. First, the Lyapunov exponents for the Kontsevich-Zorich cocycle depend continuously on affine measures, answering a question in [MMY]. Second, if $\\\\mathbb{P}(\\\\mathbf{V})$ is an irreducible, flat projective bundle over a compact hyperbolic surface $\\\\Sigma$, with hyperbolic foliation $\\\\mathcal{F}$ tangent to the flat connection, then the foliated horocycle flow on $T^1\\\\mathcal{F}$ is uniquely ergodic if the top Lyapunov exponent of the foliated geodesic flow is simple. This generalizes results in [BG] to arbitrary dimension.\",\"PeriodicalId\":55445,\"journal\":{\"name\":\"Asterisque\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asterisque\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/ast.1103\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asterisque","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ast.1103","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

我们考虑$SL(2,\mathbb{R})$在向量丛$\mathbf{H}$上的作用,在基$X$上保留遍历概率测度$\nu$。在这个作用的不可约性假设下,我们证明了如果$\hat\nu$是$\nu$对上三角子群下不变的投影bunde$\mathbb{P}(\mathbf{H}{E}_1)正对角半群的顶部李雅普诺夫子空间的$。我们导出了两个应用程序。首先,Kontsevich-Zorich共循环的Lyapunov指数连续依赖于仿射测度,回答了[MMY]中的一个问题。其次,如果$\mathbb{P}(\mathbf{V})$是紧致双曲面$\Sigma$上的不可约平坦投影丛,双曲叶理$\mathcal{F}$与平坦连接相切,则如果叶理测地线流的顶部李雅普诺夫指数是简单的,则$T^1\mathcal{F}$上的叶理horocycle流是唯一遍历的。这将[BG]中的结果推广到任意维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projective cocycles over SL(2,R) actions: measures invariant under the upper triangular group
We consider the action of $SL(2,\mathbb{R})$ on a vector bundle $\mathbf{H}$ preserving an ergodic probability measure $\nu$ on the base $X$. Under an irreducibility assumption on this action, we prove that if $\hat\nu$ is any lift of $\nu$ to a probability measure on the projectivized bunde $\mathbb{P}(\mathbf{H})$ that is invariant under the upper triangular subgroup, then $\hat \nu$ is supported in the projectivization $\mathbb{P}(\mathbf{E}_1)$ of the top Lyapunov subspace of the positive diagonal semigroup. We derive two applications. First, the Lyapunov exponents for the Kontsevich-Zorich cocycle depend continuously on affine measures, answering a question in [MMY]. Second, if $\mathbb{P}(\mathbf{V})$ is an irreducible, flat projective bundle over a compact hyperbolic surface $\Sigma$, with hyperbolic foliation $\mathcal{F}$ tangent to the flat connection, then the foliated horocycle flow on $T^1\mathcal{F}$ is uniquely ergodic if the top Lyapunov exponent of the foliated geodesic flow is simple. This generalizes results in [BG] to arbitrary dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asterisque
Asterisque MATHEMATICS-
CiteScore
2.90
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: The publications part of the site of the French Mathematical Society (Société Mathématique de France - SMF) is bilingual English-French. You may visit the pages below to discover our list of journals and book collections. The institutional web site of the SMF (news, teaching activities, conference announcements...) is essentially written in French.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信