基因表达的延迟微分方程模型

Q3 Engineering
Amit Sharma, N. Adlakha
{"title":"基因表达的延迟微分方程模型","authors":"Amit Sharma, N. Adlakha","doi":"10.25728/ASSA.2020.20.3.869","DOIUrl":null,"url":null,"abstract":"In this study, a delay differential equation model of gene expression for both retroviruses and normal cell is proposed to study the dynamics of functional gene products. The model is categorised into two sub-models to understand the characteristics of a cell by incorporating time delays in the processes of gene expression. The first model which is for retroviruses, involves time delay in replication, transcription, reverse transcription and translation processes taking place in the cell, while in the second model which is for normal cell, the time delay in transcription and translation processes are incorporated. A numerical solution is obtained using semi-temporal data set. The impact of time delays on temporal concentration profile of DNA, mRNA and proteins have been analysed which gives better insight into the normal cell as well as retroviruses. Further, sensitivity analysis has been performed for both models to study the behaviour of gene expression in the cell. The results obtained from such models can be useful for biomedical applications.","PeriodicalId":39095,"journal":{"name":"Advances in Systems Science and Applications","volume":"20 1","pages":"73-90"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delay Differential Equation Model of Gene Expression\",\"authors\":\"Amit Sharma, N. Adlakha\",\"doi\":\"10.25728/ASSA.2020.20.3.869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a delay differential equation model of gene expression for both retroviruses and normal cell is proposed to study the dynamics of functional gene products. The model is categorised into two sub-models to understand the characteristics of a cell by incorporating time delays in the processes of gene expression. The first model which is for retroviruses, involves time delay in replication, transcription, reverse transcription and translation processes taking place in the cell, while in the second model which is for normal cell, the time delay in transcription and translation processes are incorporated. A numerical solution is obtained using semi-temporal data set. The impact of time delays on temporal concentration profile of DNA, mRNA and proteins have been analysed which gives better insight into the normal cell as well as retroviruses. Further, sensitivity analysis has been performed for both models to study the behaviour of gene expression in the cell. The results obtained from such models can be useful for biomedical applications.\",\"PeriodicalId\":39095,\"journal\":{\"name\":\"Advances in Systems Science and Applications\",\"volume\":\"20 1\",\"pages\":\"73-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Systems Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25728/ASSA.2020.20.3.869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Systems Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25728/ASSA.2020.20.3.869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了逆转录病毒和正常细胞基因表达的延迟微分方程模型,以研究功能基因产物的动力学。该模型分为两个子模型,通过在基因表达过程中纳入时间延迟来理解细胞的特征。第一个模型是针对逆转录病毒的,涉及细胞内发生的复制、转录、逆转录和翻译过程的时间延迟,而第二个模型是针对正常细胞的,包括转录和翻译过程的时间延迟。利用半时态数据集得到了数值解。时间延迟对DNA、mRNA和蛋白质的时间浓度谱的影响已被分析,从而更好地了解正常细胞和逆转录病毒。此外,对两种模型进行了敏感性分析,以研究细胞中基因表达的行为。从这些模型中获得的结果可用于生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Delay Differential Equation Model of Gene Expression
In this study, a delay differential equation model of gene expression for both retroviruses and normal cell is proposed to study the dynamics of functional gene products. The model is categorised into two sub-models to understand the characteristics of a cell by incorporating time delays in the processes of gene expression. The first model which is for retroviruses, involves time delay in replication, transcription, reverse transcription and translation processes taking place in the cell, while in the second model which is for normal cell, the time delay in transcription and translation processes are incorporated. A numerical solution is obtained using semi-temporal data set. The impact of time delays on temporal concentration profile of DNA, mRNA and proteins have been analysed which gives better insight into the normal cell as well as retroviruses. Further, sensitivity analysis has been performed for both models to study the behaviour of gene expression in the cell. The results obtained from such models can be useful for biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Systems Science and Applications
Advances in Systems Science and Applications Engineering-Engineering (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Advances in Systems Science and Applications (ASSA) is an international peer-reviewed open-source online academic journal. Its scope covers all major aspects of systems (and processes) analysis, modeling, simulation, and control, ranging from theoretical and methodological developments to a large variety of application areas. Survey articles and innovative results are also welcome. ASSA is aimed at the audience of scientists, engineers and researchers working in the framework of these problems. ASSA should be a platform on which researchers will be able to communicate and discuss both their specialized issues and interdisciplinary problems of systems analysis and its applications in science and industry, including data science, artificial intelligence, material science, manufacturing, transportation, power and energy, ecology, corporate management, public governance, finance, and many others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信