一种实时硬件入侵检测系统及分类特征算法

IF 1.1 Q3 CRIMINOLOGY & PENOLOGY
T. Sobh
{"title":"一种实时硬件入侵检测系统及分类特征算法","authors":"T. Sobh","doi":"10.1080/19361610.2022.2103363","DOIUrl":null,"url":null,"abstract":"Abstract Nowadays, everybody needs to secure his/her activities. Existing levels of cyber-criminals need technology for detecting malicious activity. This work proposes a real-time Hardware IDS implemented on FPGA and an algorithm for classifying features from network traffic through the network interface card (NIC). It minimizes search time for extracting statistical features from connection records stored in connection queues to memory references. Therefore, it can detect most internal and external network attacks. A decision tree classifier is used as an inference engine and gives a high detection rate of 99.93%.","PeriodicalId":44585,"journal":{"name":"Journal of Applied Security Research","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Real-Time Hardware Intrusion Detection System and a Classifying Features Algorithm\",\"authors\":\"T. Sobh\",\"doi\":\"10.1080/19361610.2022.2103363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Nowadays, everybody needs to secure his/her activities. Existing levels of cyber-criminals need technology for detecting malicious activity. This work proposes a real-time Hardware IDS implemented on FPGA and an algorithm for classifying features from network traffic through the network interface card (NIC). It minimizes search time for extracting statistical features from connection records stored in connection queues to memory references. Therefore, it can detect most internal and external network attacks. A decision tree classifier is used as an inference engine and gives a high detection rate of 99.93%.\",\"PeriodicalId\":44585,\"journal\":{\"name\":\"Journal of Applied Security Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Security Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19361610.2022.2103363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRIMINOLOGY & PENOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Security Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19361610.2022.2103363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRIMINOLOGY & PENOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要如今,每个人都需要保护自己的活动。现有级别的网络罪犯需要检测恶意活动的技术。本文提出了一种在FPGA上实现的实时硬件入侵检测系统,以及一种通过网络接口卡(NIC)对网络流量特征进行分类的算法。它最大限度地减少了从存储在连接队列中的连接记录中提取统计特征到内存引用的搜索时间。因此,它可以检测大多数内部和外部网络攻击。使用决策树分类器作为推理引擎,给出了99.93%的高检测率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Real-Time Hardware Intrusion Detection System and a Classifying Features Algorithm
Abstract Nowadays, everybody needs to secure his/her activities. Existing levels of cyber-criminals need technology for detecting malicious activity. This work proposes a real-time Hardware IDS implemented on FPGA and an algorithm for classifying features from network traffic through the network interface card (NIC). It minimizes search time for extracting statistical features from connection records stored in connection queues to memory references. Therefore, it can detect most internal and external network attacks. A decision tree classifier is used as an inference engine and gives a high detection rate of 99.93%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Security Research
Journal of Applied Security Research CRIMINOLOGY & PENOLOGY-
CiteScore
2.90
自引率
15.40%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信