饲料样品近红外光谱乘散校正应用中最小二乘回归斜率调整方法

IF 2.3 4区 化学 Q1 SOCIAL WORK
Mewa S. Dhanoa, Secundino López, Ruth Sanderson, Sue J. Lister, Ralph J. Barnes, Jennifer L. Ellis, James France
{"title":"饲料样品近红外光谱乘散校正应用中最小二乘回归斜率调整方法","authors":"Mewa S. Dhanoa,&nbsp;Secundino López,&nbsp;Ruth Sanderson,&nbsp;Sue J. Lister,&nbsp;Ralph J. Barnes,&nbsp;Jennifer L. Ellis,&nbsp;James France","doi":"10.1002/cem.3511","DOIUrl":null,"url":null,"abstract":"<p>Scatter corrections are commonly applied to refine near-infrared (NIR) spectra. The aim of this study is to assess the impact of measurement errors when using ordinary least squares (OLS) for multiplicative scatter correction (MSC). Any measurement errors attached to the set-mean spectrum may attenuate the OLS slope and that in turn will affect the estimate of the intercept and the adjustment of the spectra when using MSC methods to mitigate scattering. A corrected least squares slope may be used instead to prevent this problem, although the impact of this approach on the final outcome will depend on the relative size of the measurement errors in the individual spectra and the set-mean spectrum. The errors-in-variables or type II regression model (also known as Deming regression) and its special cases, major axis (MA) and reduced major axis (RMA), are discussed and illustrated. The extent of OLS slope bias or attenuation is demonstrated as is the resulting MSC spectral distortion. Further modification to the MSC transformation method is also suggested. The influence of scattering correction (by MSC, standard normal variate (SNV) and detrending) and of using the maximum likelihood estimate of the slope for MSC on the prediction of chemical composition of Lucerne herbage from NIR spectra was assessed. The predictive performance was slightly improved by the use of scattering corrections with fairly minor differences among methods. Nonetheless, it seems well worth considering the use of type II regression models for assessing MSC application aiming at improving the goodness of prediction from NIR spectra.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/cem.3511","citationCount":"0","resultStr":"{\"title\":\"Methodology adjusting for least squares regression slope in the application of multiplicative scatter correction to near-infrared spectra of forage feed samples\",\"authors\":\"Mewa S. Dhanoa,&nbsp;Secundino López,&nbsp;Ruth Sanderson,&nbsp;Sue J. Lister,&nbsp;Ralph J. Barnes,&nbsp;Jennifer L. Ellis,&nbsp;James France\",\"doi\":\"10.1002/cem.3511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Scatter corrections are commonly applied to refine near-infrared (NIR) spectra. The aim of this study is to assess the impact of measurement errors when using ordinary least squares (OLS) for multiplicative scatter correction (MSC). Any measurement errors attached to the set-mean spectrum may attenuate the OLS slope and that in turn will affect the estimate of the intercept and the adjustment of the spectra when using MSC methods to mitigate scattering. A corrected least squares slope may be used instead to prevent this problem, although the impact of this approach on the final outcome will depend on the relative size of the measurement errors in the individual spectra and the set-mean spectrum. The errors-in-variables or type II regression model (also known as Deming regression) and its special cases, major axis (MA) and reduced major axis (RMA), are discussed and illustrated. The extent of OLS slope bias or attenuation is demonstrated as is the resulting MSC spectral distortion. Further modification to the MSC transformation method is also suggested. The influence of scattering correction (by MSC, standard normal variate (SNV) and detrending) and of using the maximum likelihood estimate of the slope for MSC on the prediction of chemical composition of Lucerne herbage from NIR spectra was assessed. The predictive performance was slightly improved by the use of scattering corrections with fairly minor differences among methods. Nonetheless, it seems well worth considering the use of type II regression models for assessing MSC application aiming at improving the goodness of prediction from NIR spectra.</p>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/cem.3511\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.3511\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3511","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

摘要

散射校正通常用于精炼近红外(NIR)光谱。本研究的目的是评估使用普通最小二乘(OLS)进行乘法散点校正(MSC)时测量误差的影响。任何附加在集均值光谱上的测量误差都可能使OLS斜率衰减,进而影响在使用MSC方法减轻散射时对截距的估计和光谱的调整。可以使用修正的最小二乘斜率来防止这个问题,尽管这种方法对最终结果的影响将取决于单个光谱和集平均光谱中测量误差的相对大小。本文讨论并说明了变量误差或II型回归模型(也称为Deming回归)及其特殊情况,即长轴(MA)和缩减长轴(RMA)。OLS斜率偏差或衰减的程度证明了由此产生的MSC光谱失真。本文还提出了进一步改进MSC转化方法的建议。评估了散射校正(通过均方根、标准正态变量(SNV)和去趋势)和均方根斜率的最大似然估计对近红外光谱预测卢塞恩牧草化学成分的影响。使用散射校正,预测性能略有提高,方法之间的差异相当小。尽管如此,似乎很值得考虑使用II型回归模型来评估MSC应用,旨在提高近红外光谱预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Methodology adjusting for least squares regression slope in the application of multiplicative scatter correction to near-infrared spectra of forage feed samples

Methodology adjusting for least squares regression slope in the application of multiplicative scatter correction to near-infrared spectra of forage feed samples

Scatter corrections are commonly applied to refine near-infrared (NIR) spectra. The aim of this study is to assess the impact of measurement errors when using ordinary least squares (OLS) for multiplicative scatter correction (MSC). Any measurement errors attached to the set-mean spectrum may attenuate the OLS slope and that in turn will affect the estimate of the intercept and the adjustment of the spectra when using MSC methods to mitigate scattering. A corrected least squares slope may be used instead to prevent this problem, although the impact of this approach on the final outcome will depend on the relative size of the measurement errors in the individual spectra and the set-mean spectrum. The errors-in-variables or type II regression model (also known as Deming regression) and its special cases, major axis (MA) and reduced major axis (RMA), are discussed and illustrated. The extent of OLS slope bias or attenuation is demonstrated as is the resulting MSC spectral distortion. Further modification to the MSC transformation method is also suggested. The influence of scattering correction (by MSC, standard normal variate (SNV) and detrending) and of using the maximum likelihood estimate of the slope for MSC on the prediction of chemical composition of Lucerne herbage from NIR spectra was assessed. The predictive performance was slightly improved by the use of scattering corrections with fairly minor differences among methods. Nonetheless, it seems well worth considering the use of type II regression models for assessing MSC application aiming at improving the goodness of prediction from NIR spectra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信