求解机器人逆运动学问题的一种加速方法

IF 2.3 4区 计算机科学 Q2 Computer Science
Shuxin Xie, Lining Sun, Zhenhua Wang, Guodong Chen
{"title":"求解机器人逆运动学问题的一种加速方法","authors":"Shuxin Xie, Lining Sun, Zhenhua Wang, Guodong Chen","doi":"10.1177/17298806221104602","DOIUrl":null,"url":null,"abstract":"The inverse kinematics problem involves the study that the inverse kinematics solver needs to calculate the values of the joint variables given the desired pose of the end-effector of a robot. However, to apply to seven-degree-of-freedom robots with arbitrary configuration, analytical methods need to fix one joint and set an increment when the current value fails to solve the inverse kinematics problem. Although numerical methods based on inverse differential kinematics are efficient in solving the inverse kinematics problem of seven-degree-of-freedom robots with arbitrary geometric parameters, they are deficient in numerical stability and time-consuming for convergence to one solution governed by the initial guess. In order to reduce the execution time of an inverse kinematics solver, this article introduces a speedup method for analytical and numerical methods, which can improve their performance.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A speedup method for solving the inverse kinematics problem of robotic manipulators\",\"authors\":\"Shuxin Xie, Lining Sun, Zhenhua Wang, Guodong Chen\",\"doi\":\"10.1177/17298806221104602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inverse kinematics problem involves the study that the inverse kinematics solver needs to calculate the values of the joint variables given the desired pose of the end-effector of a robot. However, to apply to seven-degree-of-freedom robots with arbitrary configuration, analytical methods need to fix one joint and set an increment when the current value fails to solve the inverse kinematics problem. Although numerical methods based on inverse differential kinematics are efficient in solving the inverse kinematics problem of seven-degree-of-freedom robots with arbitrary geometric parameters, they are deficient in numerical stability and time-consuming for convergence to one solution governed by the initial guess. In order to reduce the execution time of an inverse kinematics solver, this article introduces a speedup method for analytical and numerical methods, which can improve their performance.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806221104602\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221104602","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 5

摘要

运动学反解问题研究的是在给定机器人末端执行器期望姿态的情况下,运动学反解求解器需要计算关节变量的值。然而,对于具有任意构型的七自由度机器人,解析方法需要在当前值不能解决运动学逆问题时固定一个关节并设置一个增量。基于逆微分运动学的数值方法对于求解具有任意几何参数的七自由度机器人的逆运动学问题是有效的,但其数值稳定性差,且收敛到一个由初始猜想控制的解耗时长。为了减少逆运动学求解器的执行时间,本文介绍了一种对解析法和数值法进行加速的方法,提高了解析法和数值法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A speedup method for solving the inverse kinematics problem of robotic manipulators
The inverse kinematics problem involves the study that the inverse kinematics solver needs to calculate the values of the joint variables given the desired pose of the end-effector of a robot. However, to apply to seven-degree-of-freedom robots with arbitrary configuration, analytical methods need to fix one joint and set an increment when the current value fails to solve the inverse kinematics problem. Although numerical methods based on inverse differential kinematics are efficient in solving the inverse kinematics problem of seven-degree-of-freedom robots with arbitrary geometric parameters, they are deficient in numerical stability and time-consuming for convergence to one solution governed by the initial guess. In order to reduce the execution time of an inverse kinematics solver, this article introduces a speedup method for analytical and numerical methods, which can improve their performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
65
审稿时长
6 months
期刊介绍: International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信