多项式模型在湿度传感器贝叶斯融合中的应用

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
P. Nikovski, N. Doychinov
{"title":"多项式模型在湿度传感器贝叶斯融合中的应用","authors":"P. Nikovski, N. Doychinov","doi":"10.18421/tem123-30","DOIUrl":null,"url":null,"abstract":"Local polynomial trend models are a special class of state-space models that can be used without having the full information about the process under study, since most of their parameters are embodied in the state vector and estimated immediately. This makes them attractive for use in signal processing. The present work considers problems that arise when using a polynomial model with a local quadratic trend for Bayesian fusion of two humidity sensors. The unknown sensor biases make it impossible for the model to satisfy the observability conditions. There is currently no general solution to this problem. To overcome this difficulty, an approach is presented where the humidity measurement result implicitly includes the bias of one of the sensors. The results of the study can be used to fuse quantities other than humidity when two or more sensors are available.","PeriodicalId":45439,"journal":{"name":"TEM Journal-Technology Education Management Informatics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Polynomial Models in Bayesian Fusion of Humidity Sensors\",\"authors\":\"P. Nikovski, N. Doychinov\",\"doi\":\"10.18421/tem123-30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local polynomial trend models are a special class of state-space models that can be used without having the full information about the process under study, since most of their parameters are embodied in the state vector and estimated immediately. This makes them attractive for use in signal processing. The present work considers problems that arise when using a polynomial model with a local quadratic trend for Bayesian fusion of two humidity sensors. The unknown sensor biases make it impossible for the model to satisfy the observability conditions. There is currently no general solution to this problem. To overcome this difficulty, an approach is presented where the humidity measurement result implicitly includes the bias of one of the sensors. The results of the study can be used to fuse quantities other than humidity when two or more sensors are available.\",\"PeriodicalId\":45439,\"journal\":{\"name\":\"TEM Journal-Technology Education Management Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEM Journal-Technology Education Management Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18421/tem123-30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEM Journal-Technology Education Management Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18421/tem123-30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

局部多项式趋势模型是一种特殊的状态空间模型,由于其大部分参数都体现在状态向量中,并且可以立即估计,因此可以在不具有所研究过程的全部信息的情况下使用。这使得它们在信号处理中具有吸引力。本文研究了采用局部二次趋势的多项式模型对两个湿度传感器进行贝叶斯融合时出现的问题。未知的传感器偏差使模型无法满足可观测性条件。目前还没有解决这个问题的通用方法。为了克服这一困难,提出了一种方法,其中湿度测量结果隐含地包括其中一个传感器的偏差。当有两个或多个传感器可用时,研究结果可用于融合湿度以外的量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Polynomial Models in Bayesian Fusion of Humidity Sensors
Local polynomial trend models are a special class of state-space models that can be used without having the full information about the process under study, since most of their parameters are embodied in the state vector and estimated immediately. This makes them attractive for use in signal processing. The present work considers problems that arise when using a polynomial model with a local quadratic trend for Bayesian fusion of two humidity sensors. The unknown sensor biases make it impossible for the model to satisfy the observability conditions. There is currently no general solution to this problem. To overcome this difficulty, an approach is presented where the humidity measurement result implicitly includes the bias of one of the sensors. The results of the study can be used to fuse quantities other than humidity when two or more sensors are available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
TEM Journal-Technology Education Management Informatics
TEM Journal-Technology Education Management Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
14.30%
发文量
176
审稿时长
8 weeks
期刊介绍: TEM JOURNAL - Technology, Education, Management, Informatics Is a an Open Access, Double-blind peer reviewed journal that publishes articles of interdisciplinary sciences: • Technology, • Computer and informatics sciences, • Education, • Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信