Ravenel谱拓扑Hochschild同调的Segal猜想

IF 0.5 4区 数学
Gabriel Angelini-Knoll, J. D. Quigley
{"title":"Ravenel谱拓扑Hochschild同调的Segal猜想","authors":"Gabriel Angelini-Knoll,&nbsp;J. D. Quigley","doi":"10.1007/s40062-021-00275-7","DOIUrl":null,"url":null,"abstract":"<p>In the 1980’s, Ravenel introduced sequences of spectra <i>X</i>(<i>n</i>) and <i>T</i>(<i>n</i>) which played an important role in the proof of the Nilpotence Theorem of Devinatz–Hopkins–Smith. In the present paper, we solve the homotopy limit problem for topological Hochschild homology of <i>X</i>(<i>n</i>), which is a generalized version of the Segal Conjecture for the cyclic groups of prime order. This result is the first step towards computing the algebraic K-theory of <i>X</i>(<i>n</i>) using trace methods, which approximates the algebraic K-theory of the sphere spectrum in a precise sense. We solve the homotopy limit problem for topological Hochschild homology of <i>T</i>(<i>n</i>) under the assumption that the canonical map <span>\\(T(n)\\rightarrow BP\\)</span> of homotopy commutative ring spectra can be rigidified to map of <span>\\(E_2\\)</span> ring spectra. We show that the obstruction to our assumption holding can be described in terms of an explicit class in an Atiyah-Hirzebruch spectral sequence.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"16 1","pages":"41 - 60"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-021-00275-7","citationCount":"5","resultStr":"{\"title\":\"The Segal conjecture for topological Hochschild homology of Ravenel spectra\",\"authors\":\"Gabriel Angelini-Knoll,&nbsp;J. D. Quigley\",\"doi\":\"10.1007/s40062-021-00275-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the 1980’s, Ravenel introduced sequences of spectra <i>X</i>(<i>n</i>) and <i>T</i>(<i>n</i>) which played an important role in the proof of the Nilpotence Theorem of Devinatz–Hopkins–Smith. In the present paper, we solve the homotopy limit problem for topological Hochschild homology of <i>X</i>(<i>n</i>), which is a generalized version of the Segal Conjecture for the cyclic groups of prime order. This result is the first step towards computing the algebraic K-theory of <i>X</i>(<i>n</i>) using trace methods, which approximates the algebraic K-theory of the sphere spectrum in a precise sense. We solve the homotopy limit problem for topological Hochschild homology of <i>T</i>(<i>n</i>) under the assumption that the canonical map <span>\\\\(T(n)\\\\rightarrow BP\\\\)</span> of homotopy commutative ring spectra can be rigidified to map of <span>\\\\(E_2\\\\)</span> ring spectra. We show that the obstruction to our assumption holding can be described in terms of an explicit class in an Atiyah-Hirzebruch spectral sequence.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"16 1\",\"pages\":\"41 - 60\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-021-00275-7\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-021-00275-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-021-00275-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在20世纪80年代,Ravenel引入了谱序列X(n)和T(n),在证明Devinatz-Hopkins-Smith的幂零定理中发挥了重要作用。本文解决了X(n)的拓扑Hochschild同调的同伦极限问题,它是素阶循环群的Segal猜想的推广版本。这一结果是用迹方法计算X(n)的代数k理论的第一步,它在精确意义上近似于球谱的代数k理论。在假设同伦交换环谱的正则映射\(T(n)\rightarrow BP\)可以刚性化为\(E_2\)环谱的映射的前提下,我们解决了T(n)拓扑Hochschild同伦的同伦极限问题。我们证明阻碍我们假设的障碍可以用Atiyah-Hirzebruch谱序列中的显式类来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Segal conjecture for topological Hochschild homology of Ravenel spectra

In the 1980’s, Ravenel introduced sequences of spectra X(n) and T(n) which played an important role in the proof of the Nilpotence Theorem of Devinatz–Hopkins–Smith. In the present paper, we solve the homotopy limit problem for topological Hochschild homology of X(n), which is a generalized version of the Segal Conjecture for the cyclic groups of prime order. This result is the first step towards computing the algebraic K-theory of X(n) using trace methods, which approximates the algebraic K-theory of the sphere spectrum in a precise sense. We solve the homotopy limit problem for topological Hochschild homology of T(n) under the assumption that the canonical map \(T(n)\rightarrow BP\) of homotopy commutative ring spectra can be rigidified to map of \(E_2\) ring spectra. We show that the obstruction to our assumption holding can be described in terms of an explicit class in an Atiyah-Hirzebruch spectral sequence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信