使用极端u统计量的尾部推断

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Jochem Oorschot, J. Segers, Chen Zhou
{"title":"使用极端u统计量的尾部推断","authors":"Jochem Oorschot, J. Segers, Chen Zhou","doi":"10.1214/23-ejs2129","DOIUrl":null,"url":null,"abstract":"Extreme U-statistics arise when the kernel of a U-statistic has a high degree but depends only on its arguments through a small number of top order statistics. As the kernel degree of the U-statistic grows to infinity with the sample size, estimators built out of such statistics form an intermediate family in between those constructed in the block maxima and peaks-over-threshold frameworks in extreme value analysis. The asymptotic normality of extreme U-statistics based on location-scale invariant kernels is established. Although the asymptotic variance coincides with the one of the H\\'ajek projection, the proof goes beyond considering the first term in Hoeffding's variance decomposition. We propose a kernel depending on the three highest order statistics leading to a location-scale invariant estimator of the extreme value index resembling the Pickands estimator. This extreme Pickands U-estimator is asymptotically normal and its finite-sample performance is competitive with that of the pseudo-maximum likelihood estimator.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tail inference using extreme U-statistics\",\"authors\":\"Jochem Oorschot, J. Segers, Chen Zhou\",\"doi\":\"10.1214/23-ejs2129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme U-statistics arise when the kernel of a U-statistic has a high degree but depends only on its arguments through a small number of top order statistics. As the kernel degree of the U-statistic grows to infinity with the sample size, estimators built out of such statistics form an intermediate family in between those constructed in the block maxima and peaks-over-threshold frameworks in extreme value analysis. The asymptotic normality of extreme U-statistics based on location-scale invariant kernels is established. Although the asymptotic variance coincides with the one of the H\\\\'ajek projection, the proof goes beyond considering the first term in Hoeffding's variance decomposition. We propose a kernel depending on the three highest order statistics leading to a location-scale invariant estimator of the extreme value index resembling the Pickands estimator. This extreme Pickands U-estimator is asymptotically normal and its finite-sample performance is competitive with that of the pseudo-maximum likelihood estimator.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejs2129\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejs2129","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

当U-统计量的核具有很高的度,但仅通过少量的高阶统计量依赖于其自变量时,就会出现极端U-统计量。随着U-统计量的核度随着样本量的增加而增长到无穷大,由这种统计量构建的估计量在极值分析中的块最大值和峰值阈值框架中构建的估计之间形成了一个中间族。建立了基于位置尺度不变核的极限U-统计量的渐近正态性。尽管渐近方差与H’ajek投影的渐近方差一致,但证明超出了考虑Hoeffding方差分解中的第一项。我们提出了一个依赖于三个最高阶统计量的核,从而产生类似于Pickands估计器的极值指数的位置-尺度不变估计器。该极限Pickands U-估计是渐近正态的,其有限样本性能与伪最大似然估计具有竞争性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tail inference using extreme U-statistics
Extreme U-statistics arise when the kernel of a U-statistic has a high degree but depends only on its arguments through a small number of top order statistics. As the kernel degree of the U-statistic grows to infinity with the sample size, estimators built out of such statistics form an intermediate family in between those constructed in the block maxima and peaks-over-threshold frameworks in extreme value analysis. The asymptotic normality of extreme U-statistics based on location-scale invariant kernels is established. Although the asymptotic variance coincides with the one of the H\'ajek projection, the proof goes beyond considering the first term in Hoeffding's variance decomposition. We propose a kernel depending on the three highest order statistics leading to a location-scale invariant estimator of the extreme value index resembling the Pickands estimator. This extreme Pickands U-estimator is asymptotically normal and its finite-sample performance is competitive with that of the pseudo-maximum likelihood estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信