{"title":"网络中运动异常检测的顺序算法","authors":"Georgios Rovatsos, Shaofeng Zou, V. Veeravalli","doi":"10.1080/07474946.2020.1726678","DOIUrl":null,"url":null,"abstract":"Abstract The problem of quickest moving anomaly detection in networks is studied. Initially, the observations are generated according to a prechange distribution. At some unknown but deterministic time, an anomaly emerges in the network. At each time instant, one node is affected by the anomaly and receives data from a post-change distribution. The anomaly moves across the network, and the node that it affects changes with time. However, the trajectory of the moving anomaly is assumed to be unknown. A discrete-time Markov chain is employed to model the unknown trajectory of the moving anomaly in the network. A windowed generalized likelihood ratio–based test is constructed and is shown to be asymptotically optimal. Other detection algorithms including the dynamic Shiryaev-Roberts test, a quickest change detection algorithm with recursive change point estimation, and a mixture cumulative sum (CUSUM) algorithm are also developed for this problem. Lower bounds on the mean time to false alarm are developed. Numerical results are further provided to compare their performances.","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":"39 1","pages":"31 - 6"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474946.2020.1726678","citationCount":"16","resultStr":"{\"title\":\"Sequential algorithms for moving anomaly detection in networks\",\"authors\":\"Georgios Rovatsos, Shaofeng Zou, V. Veeravalli\",\"doi\":\"10.1080/07474946.2020.1726678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The problem of quickest moving anomaly detection in networks is studied. Initially, the observations are generated according to a prechange distribution. At some unknown but deterministic time, an anomaly emerges in the network. At each time instant, one node is affected by the anomaly and receives data from a post-change distribution. The anomaly moves across the network, and the node that it affects changes with time. However, the trajectory of the moving anomaly is assumed to be unknown. A discrete-time Markov chain is employed to model the unknown trajectory of the moving anomaly in the network. A windowed generalized likelihood ratio–based test is constructed and is shown to be asymptotically optimal. Other detection algorithms including the dynamic Shiryaev-Roberts test, a quickest change detection algorithm with recursive change point estimation, and a mixture cumulative sum (CUSUM) algorithm are also developed for this problem. Lower bounds on the mean time to false alarm are developed. Numerical results are further provided to compare their performances.\",\"PeriodicalId\":48879,\"journal\":{\"name\":\"Sequential Analysis-Design Methods and Applications\",\"volume\":\"39 1\",\"pages\":\"31 - 6\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07474946.2020.1726678\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sequential Analysis-Design Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07474946.2020.1726678\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2020.1726678","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Sequential algorithms for moving anomaly detection in networks
Abstract The problem of quickest moving anomaly detection in networks is studied. Initially, the observations are generated according to a prechange distribution. At some unknown but deterministic time, an anomaly emerges in the network. At each time instant, one node is affected by the anomaly and receives data from a post-change distribution. The anomaly moves across the network, and the node that it affects changes with time. However, the trajectory of the moving anomaly is assumed to be unknown. A discrete-time Markov chain is employed to model the unknown trajectory of the moving anomaly in the network. A windowed generalized likelihood ratio–based test is constructed and is shown to be asymptotically optimal. Other detection algorithms including the dynamic Shiryaev-Roberts test, a quickest change detection algorithm with recursive change point estimation, and a mixture cumulative sum (CUSUM) algorithm are also developed for this problem. Lower bounds on the mean time to false alarm are developed. Numerical results are further provided to compare their performances.
期刊介绍:
The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches.
Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.