{"title":"对应于Karakaya迭代过程的非凸混合方法","authors":"Samina Kausar, M. Asif, Mubeen Munir","doi":"10.30538/psrp-oma2018.0008","DOIUrl":null,"url":null,"abstract":"In this article we present non-convex hybrid iteration algorithm corollaryresponding to Karakaya iterative scheme [1] as done by Guan et al. in [2] corollaryresponding to Mann iterative scheme [3]. We also prove some strong convergence results about common fixed points for a uniformly closed asymptotic family of countable quasi-Lipschitz mappings in Hilbert spaces. AMS Mathematics Subject Classification: 47H05; 47H09; 47H10.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-convex hybrid Method corresponding to Karakaya Iterative Process\",\"authors\":\"Samina Kausar, M. Asif, Mubeen Munir\",\"doi\":\"10.30538/psrp-oma2018.0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we present non-convex hybrid iteration algorithm corollaryresponding to Karakaya iterative scheme [1] as done by Guan et al. in [2] corollaryresponding to Mann iterative scheme [3]. We also prove some strong convergence results about common fixed points for a uniformly closed asymptotic family of countable quasi-Lipschitz mappings in Hilbert spaces. AMS Mathematics Subject Classification: 47H05; 47H09; 47H10.\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/psrp-oma2018.0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2018.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-convex hybrid Method corresponding to Karakaya Iterative Process
In this article we present non-convex hybrid iteration algorithm corollaryresponding to Karakaya iterative scheme [1] as done by Guan et al. in [2] corollaryresponding to Mann iterative scheme [3]. We also prove some strong convergence results about common fixed points for a uniformly closed asymptotic family of countable quasi-Lipschitz mappings in Hilbert spaces. AMS Mathematics Subject Classification: 47H05; 47H09; 47H10.