{"title":"偏度量空间中弱相容映射混合对的不动点定理","authors":"Santosh Kumar, Johnson Allen Kessy","doi":"10.21136/mb.2022.0197-20","DOIUrl":null,"url":null,"abstract":". The notions of compatible mappings play a crucial role in metrical fixed point theory. Partial metric spaces are a generalization of the notion of a metric space in the sense that distance of a point from itself is not necessarily zero. In this paper, we prove coincidence and fixed point theorems for a pair of single-valued and multi-valued weak compatible mappings on a complete partial metric space. Our main results generalize, in particular, the results of Kaneko and Sessa (1989), Pathak (1995) and Kessy, Kumar and Kakiko (2017). Examples that illustrate the generality of our results are also provided.","PeriodicalId":45392,"journal":{"name":"Mathematica Bohemica","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed point theorems for hybrid pair of weak compatible mappings\\n \\nin partial metric spaces\",\"authors\":\"Santosh Kumar, Johnson Allen Kessy\",\"doi\":\"10.21136/mb.2022.0197-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The notions of compatible mappings play a crucial role in metrical fixed point theory. Partial metric spaces are a generalization of the notion of a metric space in the sense that distance of a point from itself is not necessarily zero. In this paper, we prove coincidence and fixed point theorems for a pair of single-valued and multi-valued weak compatible mappings on a complete partial metric space. Our main results generalize, in particular, the results of Kaneko and Sessa (1989), Pathak (1995) and Kessy, Kumar and Kakiko (2017). Examples that illustrate the generality of our results are also provided.\",\"PeriodicalId\":45392,\"journal\":{\"name\":\"Mathematica Bohemica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Bohemica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21136/mb.2022.0197-20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Bohemica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21136/mb.2022.0197-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fixed point theorems for hybrid pair of weak compatible mappings
in partial metric spaces
. The notions of compatible mappings play a crucial role in metrical fixed point theory. Partial metric spaces are a generalization of the notion of a metric space in the sense that distance of a point from itself is not necessarily zero. In this paper, we prove coincidence and fixed point theorems for a pair of single-valued and multi-valued weak compatible mappings on a complete partial metric space. Our main results generalize, in particular, the results of Kaneko and Sessa (1989), Pathak (1995) and Kessy, Kumar and Kakiko (2017). Examples that illustrate the generality of our results are also provided.