{"title":"在𝑝-adic整数上决定多项式方程组可解性的有效算法","authors":"A. Chistov","doi":"10.1090/spmj/1740","DOIUrl":null,"url":null,"abstract":"<p>Consider a system of polynomial equations in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> variables of degrees at most <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with integer coefficients whose lengths are at most <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. By using a construction close to smooth stratification of algebraic varieties, it is shown that one can construct a positive integer <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta greater-than 2 Superscript upper M left-parenthesis n d right-parenthesis Super Superscript c 2 Super Super Superscript n Super Superscript n cubed\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mi>d</mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>c</mml:mi>\n <mml:mspace width=\"thinmathspace\" />\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:msup>\n <mml:mi>n</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\Delta > 2^{M(nd)^{c\\, 2^n n^3}} \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n (here <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>c</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">c>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a constant) depending on these polynomials and having the following property. For every prime <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> the system under study has a solution in the ring of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic numbers if and only if it has a solution modulo <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript upper N\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>p</mml:mi>\n <mml:mi>N</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">p^N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for the least integer <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> such that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript upper N\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>p</mml:mi>\n <mml:mi>N</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">p^N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> does not divide <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This improves the previously known, at present classical result by B. J. Birch and K. McCann.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An effective algorithm for deciding the solvability of a system of polynomial equations over 𝑝-adic integers\",\"authors\":\"A. Chistov\",\"doi\":\"10.1090/spmj/1740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider a system of polynomial equations in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\">\\n <mml:semantics>\\n <mml:mi>n</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> variables of degrees at most <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\">\\n <mml:semantics>\\n <mml:mi>d</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with integer coefficients whose lengths are at most <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. By using a construction close to smooth stratification of algebraic varieties, it is shown that one can construct a positive integer <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Delta greater-than 2 Superscript upper M left-parenthesis n d right-parenthesis Super Superscript c 2 Super Super Superscript n Super Superscript n cubed\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:msup>\\n <mml:mn>2</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>M</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mi>d</mml:mi>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>c</mml:mi>\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:msup>\\n <mml:mn>2</mml:mn>\\n <mml:mi>n</mml:mi>\\n </mml:msup>\\n <mml:msup>\\n <mml:mi>n</mml:mi>\\n <mml:mn>3</mml:mn>\\n </mml:msup>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\Delta > 2^{M(nd)^{c\\\\, 2^n n^3}} \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula>\\n (here <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"c greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>c</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">c>0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a constant) depending on these polynomials and having the following property. For every prime <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> the system under study has a solution in the ring of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic numbers if and only if it has a solution modulo <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p Superscript upper N\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>p</mml:mi>\\n <mml:mi>N</mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p^N</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for the least integer <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\">\\n <mml:semantics>\\n <mml:mi>N</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> such that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p Superscript upper N\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>p</mml:mi>\\n <mml:mi>N</mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p^N</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> does not divide <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Delta\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Delta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. This improves the previously known, at present classical result by B. J. Birch and K. McCann.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1740\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1740","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
考虑一个多项式方程组,其中n个变量的度数最多为d d,其整数系数的长度最多为M M。利用代数变量接近光滑分层的构造,我们可以构造一个正整数Δ >m (nd) c2n3\begin{equation*} \Delta > 2^{M(nd)^{c\, 2^n n^3}} \end{equation*}(这里c>0 c>0是一个常数)依赖于这些多项式,并且有以下属性。对于每一个素数p p,所研究的系统在p个p进数环中有解当且仅当它对最小整数N N有模p N p^N的解使得p N p^N不除Δ \Delta。这改进了先前已知的,目前由B. J. Birch和K. McCann给出的经典结果。
An effective algorithm for deciding the solvability of a system of polynomial equations over 𝑝-adic integers
Consider a system of polynomial equations in nn variables of degrees at most dd with integer coefficients whose lengths are at most MM. By using a construction close to smooth stratification of algebraic varieties, it is shown that one can construct a positive integer Δ>2M(nd)c2nn3\begin{equation*} \Delta > 2^{M(nd)^{c\, 2^n n^3}} \end{equation*}
(here c>0c>0 is a constant) depending on these polynomials and having the following property. For every prime pp the system under study has a solution in the ring of pp-adic numbers if and only if it has a solution modulo pNp^N for the least integer NN such that pNp^N does not divide Δ\Delta. This improves the previously known, at present classical result by B. J. Birch and K. McCann.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.